Simple Applications
Permutation and Combination

119276 If \(\left({ }^{30} \mathrm{C}_1\right)^2+2\left({ }^{30} \mathrm{C}_2\right)^2+3\left({ }^{30} \mathrm{C}_3\right)^2+\ldots \ldots .\). \(\ldots .+30\left({ }^{30} \mathrm{C}_{30}\right)^2=\frac{\alpha 60 !}{30 ! 30 !}\) then \(\alpha\) is equal to

1 60
2 10
3 15
4 30
Permutation and Combination

119277 If \({ }^n p_4=20 \times{ }^n p_2\). Then the value of \(n\) is

1 18
2 13
3 7
4 4
Permutation and Combination

119279 The number of words which can be made out of the letters of the word 'MOBILE' when consonants occupy odd places is

1 20
2 36
3 30
4 720
Permutation and Combination

119280 If ' \(n\) ' is a positive integer, then \(2.4^{2 n+1}+3^{3 n+1}\) is divisible by

1 2
2 9
3 11
4 27
Permutation and Combination

119281 \(\frac{\mathrm{C}_1}{\mathrm{C}_0}+2 \frac{\mathrm{C}_2}{\mathrm{C}_1}+3 \frac{\mathrm{C}_3}{\mathrm{C}_2}+\ldots \ldots+n \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}-1}}=\)

1 \(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\)
2 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+1)}{2}\)
4 None of these
Permutation and Combination

119276 If \(\left({ }^{30} \mathrm{C}_1\right)^2+2\left({ }^{30} \mathrm{C}_2\right)^2+3\left({ }^{30} \mathrm{C}_3\right)^2+\ldots \ldots .\). \(\ldots .+30\left({ }^{30} \mathrm{C}_{30}\right)^2=\frac{\alpha 60 !}{30 ! 30 !}\) then \(\alpha\) is equal to

1 60
2 10
3 15
4 30
Permutation and Combination

119277 If \({ }^n p_4=20 \times{ }^n p_2\). Then the value of \(n\) is

1 18
2 13
3 7
4 4
Permutation and Combination

119279 The number of words which can be made out of the letters of the word 'MOBILE' when consonants occupy odd places is

1 20
2 36
3 30
4 720
Permutation and Combination

119280 If ' \(n\) ' is a positive integer, then \(2.4^{2 n+1}+3^{3 n+1}\) is divisible by

1 2
2 9
3 11
4 27
Permutation and Combination

119281 \(\frac{\mathrm{C}_1}{\mathrm{C}_0}+2 \frac{\mathrm{C}_2}{\mathrm{C}_1}+3 \frac{\mathrm{C}_3}{\mathrm{C}_2}+\ldots \ldots+n \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}-1}}=\)

1 \(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\)
2 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+1)}{2}\)
4 None of these
Permutation and Combination

119276 If \(\left({ }^{30} \mathrm{C}_1\right)^2+2\left({ }^{30} \mathrm{C}_2\right)^2+3\left({ }^{30} \mathrm{C}_3\right)^2+\ldots \ldots .\). \(\ldots .+30\left({ }^{30} \mathrm{C}_{30}\right)^2=\frac{\alpha 60 !}{30 ! 30 !}\) then \(\alpha\) is equal to

1 60
2 10
3 15
4 30
Permutation and Combination

119277 If \({ }^n p_4=20 \times{ }^n p_2\). Then the value of \(n\) is

1 18
2 13
3 7
4 4
Permutation and Combination

119279 The number of words which can be made out of the letters of the word 'MOBILE' when consonants occupy odd places is

1 20
2 36
3 30
4 720
Permutation and Combination

119280 If ' \(n\) ' is a positive integer, then \(2.4^{2 n+1}+3^{3 n+1}\) is divisible by

1 2
2 9
3 11
4 27
Permutation and Combination

119281 \(\frac{\mathrm{C}_1}{\mathrm{C}_0}+2 \frac{\mathrm{C}_2}{\mathrm{C}_1}+3 \frac{\mathrm{C}_3}{\mathrm{C}_2}+\ldots \ldots+n \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}-1}}=\)

1 \(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\)
2 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+1)}{2}\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Permutation and Combination

119276 If \(\left({ }^{30} \mathrm{C}_1\right)^2+2\left({ }^{30} \mathrm{C}_2\right)^2+3\left({ }^{30} \mathrm{C}_3\right)^2+\ldots \ldots .\). \(\ldots .+30\left({ }^{30} \mathrm{C}_{30}\right)^2=\frac{\alpha 60 !}{30 ! 30 !}\) then \(\alpha\) is equal to

1 60
2 10
3 15
4 30
Permutation and Combination

119277 If \({ }^n p_4=20 \times{ }^n p_2\). Then the value of \(n\) is

1 18
2 13
3 7
4 4
Permutation and Combination

119279 The number of words which can be made out of the letters of the word 'MOBILE' when consonants occupy odd places is

1 20
2 36
3 30
4 720
Permutation and Combination

119280 If ' \(n\) ' is a positive integer, then \(2.4^{2 n+1}+3^{3 n+1}\) is divisible by

1 2
2 9
3 11
4 27
Permutation and Combination

119281 \(\frac{\mathrm{C}_1}{\mathrm{C}_0}+2 \frac{\mathrm{C}_2}{\mathrm{C}_1}+3 \frac{\mathrm{C}_3}{\mathrm{C}_2}+\ldots \ldots+n \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}-1}}=\)

1 \(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\)
2 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+1)}{2}\)
4 None of these
Permutation and Combination

119276 If \(\left({ }^{30} \mathrm{C}_1\right)^2+2\left({ }^{30} \mathrm{C}_2\right)^2+3\left({ }^{30} \mathrm{C}_3\right)^2+\ldots \ldots .\). \(\ldots .+30\left({ }^{30} \mathrm{C}_{30}\right)^2=\frac{\alpha 60 !}{30 ! 30 !}\) then \(\alpha\) is equal to

1 60
2 10
3 15
4 30
Permutation and Combination

119277 If \({ }^n p_4=20 \times{ }^n p_2\). Then the value of \(n\) is

1 18
2 13
3 7
4 4
Permutation and Combination

119279 The number of words which can be made out of the letters of the word 'MOBILE' when consonants occupy odd places is

1 20
2 36
3 30
4 720
Permutation and Combination

119280 If ' \(n\) ' is a positive integer, then \(2.4^{2 n+1}+3^{3 n+1}\) is divisible by

1 2
2 9
3 11
4 27
Permutation and Combination

119281 \(\frac{\mathrm{C}_1}{\mathrm{C}_0}+2 \frac{\mathrm{C}_2}{\mathrm{C}_1}+3 \frac{\mathrm{C}_3}{\mathrm{C}_2}+\ldots \ldots+n \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}-1}}=\)

1 \(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\)
2 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+1)}{2}\)
4 None of these