119276 If (30C1)2+2(30C2)2+3(30C3)2+…….. ….+30(30C30)2=α60!30!30! then α is equal to
C (30C1)2+2(30C2)2+3(30C3)2+…….+30(30C30)2=α60!30!30!⇒ As we know that(30C1)2+2(30C2)2+…….30(30C30)2=∑r=030r(30Cr)2=∑r=030r⋅30Cr⋅30Cr=∑r30r⋅29Cr−1⋅30Cr[nCr=nr⋅n−1Cr−1]=30∑r=129Cr−1⋅30Cr=30∑29Cr−1⋅30C30−r=30×59C29=30×59!29!×30!×6030×3060 Comparing RHS, 15×60!(30!)×(30!)=α60!30!30!Comparing RHS,Hence, α=15
119277 If np4=20×np2. Then the value of n is
C We have np4=20×np2n!(n−4)!=20×n!(n−2)!1(n−4)!=20×1(n−2)(n−3)(n−4)!(n−2)(n−3)=20n2−3n−2n+6=20n2−5n−14=0(n−7)(n+2)=0n=7
119279 The number of words which can be made out of the letters of the word 'MOBILE' when consonants occupy odd places is
B Given that, Total word in MOBILE =6! Number of consonants =M,B,L=3 Number of vowel = O,I,E = 3 At odd places 3 consonants take place in 3! ways. and remaining places 3 vowel can take place in 3 ! ways. thus required words =3!×3!=6×6=36
119280 If ' n ' is a positive integer, then 2.42n+1+33n+1 is divisible by
C : Given that,n is a positive integerIf n=12.42(1)+1+33(1)+1=2.43+34=2.64+34=2.64+81=128+81=209Hence, 209 is the divisible by 11 .
119281 C1C0+2C2C1+3C3C2+……+nCnCn−1=
B Using formula nCrnCr−1=n−r+1rThen,C1C0+2C2C1+3C3C2+…..+nCnCn−1=n+2(n−12)+3(n−23)+4(n−34)+…n⋅1n=n+(n−1)+(n−2)+(n−3)+….+1=1+2+…+(n−2)+(n+1)+n=n(n+1)2