Simple Applications
Permutation and Combination

119282 Let \(T_n\) be the number of all possible triangles formed by joining vertices of an \(n\)-sided regular polygon. If \(T_{n+1}-T_n=10\), then the value of \(n\) is :

1 5
2 3
3 7
4 4
Permutation and Combination

119283 If a polygon of \(n\) sides has 560 diagonals, then \(\mathbf{n -}\)

1 35
2 36
3 37
4 38
Permutation and Combination

119284 The total number of permutations of \(n\) different things taken not more than \(r\) at a time, when each thing may be repeated any number of times is

1 \(\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{r}+1}-1\right)}{\mathrm{n}-1}\)
2 \(\frac{\mathrm{n}^{\mathrm{r}+1}-1}{\mathrm{n}-1}\)
3 \(\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{r}}-1\right)}{\mathrm{n}-1}\)
4 \(\frac{\left(\mathrm{n}^{\mathrm{r}}-1\right)}{\mathrm{n}-1}\)
Permutation and Combination

119285 Let \(m\) be a natural number such that \(20000\lt \) \(m\lt 60000\) and let \(k\) be the sum of all the digits in \(m\). then the number of numbers \(m\) for which \(k\) is even, is

1 19909
2 19989
3 18999
4 19999
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Permutation and Combination

119282 Let \(T_n\) be the number of all possible triangles formed by joining vertices of an \(n\)-sided regular polygon. If \(T_{n+1}-T_n=10\), then the value of \(n\) is :

1 5
2 3
3 7
4 4
Permutation and Combination

119283 If a polygon of \(n\) sides has 560 diagonals, then \(\mathbf{n -}\)

1 35
2 36
3 37
4 38
Permutation and Combination

119284 The total number of permutations of \(n\) different things taken not more than \(r\) at a time, when each thing may be repeated any number of times is

1 \(\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{r}+1}-1\right)}{\mathrm{n}-1}\)
2 \(\frac{\mathrm{n}^{\mathrm{r}+1}-1}{\mathrm{n}-1}\)
3 \(\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{r}}-1\right)}{\mathrm{n}-1}\)
4 \(\frac{\left(\mathrm{n}^{\mathrm{r}}-1\right)}{\mathrm{n}-1}\)
Permutation and Combination

119285 Let \(m\) be a natural number such that \(20000\lt \) \(m\lt 60000\) and let \(k\) be the sum of all the digits in \(m\). then the number of numbers \(m\) for which \(k\) is even, is

1 19909
2 19989
3 18999
4 19999
Permutation and Combination

119282 Let \(T_n\) be the number of all possible triangles formed by joining vertices of an \(n\)-sided regular polygon. If \(T_{n+1}-T_n=10\), then the value of \(n\) is :

1 5
2 3
3 7
4 4
Permutation and Combination

119283 If a polygon of \(n\) sides has 560 diagonals, then \(\mathbf{n -}\)

1 35
2 36
3 37
4 38
Permutation and Combination

119284 The total number of permutations of \(n\) different things taken not more than \(r\) at a time, when each thing may be repeated any number of times is

1 \(\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{r}+1}-1\right)}{\mathrm{n}-1}\)
2 \(\frac{\mathrm{n}^{\mathrm{r}+1}-1}{\mathrm{n}-1}\)
3 \(\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{r}}-1\right)}{\mathrm{n}-1}\)
4 \(\frac{\left(\mathrm{n}^{\mathrm{r}}-1\right)}{\mathrm{n}-1}\)
Permutation and Combination

119285 Let \(m\) be a natural number such that \(20000\lt \) \(m\lt 60000\) and let \(k\) be the sum of all the digits in \(m\). then the number of numbers \(m\) for which \(k\) is even, is

1 19909
2 19989
3 18999
4 19999
Permutation and Combination

119282 Let \(T_n\) be the number of all possible triangles formed by joining vertices of an \(n\)-sided regular polygon. If \(T_{n+1}-T_n=10\), then the value of \(n\) is :

1 5
2 3
3 7
4 4
Permutation and Combination

119283 If a polygon of \(n\) sides has 560 diagonals, then \(\mathbf{n -}\)

1 35
2 36
3 37
4 38
Permutation and Combination

119284 The total number of permutations of \(n\) different things taken not more than \(r\) at a time, when each thing may be repeated any number of times is

1 \(\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{r}+1}-1\right)}{\mathrm{n}-1}\)
2 \(\frac{\mathrm{n}^{\mathrm{r}+1}-1}{\mathrm{n}-1}\)
3 \(\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{r}}-1\right)}{\mathrm{n}-1}\)
4 \(\frac{\left(\mathrm{n}^{\mathrm{r}}-1\right)}{\mathrm{n}-1}\)
Permutation and Combination

119285 Let \(m\) be a natural number such that \(20000\lt \) \(m\lt 60000\) and let \(k\) be the sum of all the digits in \(m\). then the number of numbers \(m\) for which \(k\) is even, is

1 19909
2 19989
3 18999
4 19999