Binomial Expansion
Binomial Theorem and its Simple Application

119571 The value of \(r\) for which the coefficients of \((r-5)\) th and \((3 r+1)\) th terms in the expansion of \((1+x)^{12}\) are equal, is

1 4
2 9
3 12
4 None of these
Binomial Theorem and its Simple Application

119572 The value of \(\frac{1}{81^n}-\frac{10}{81^n}{ }^{2 n} C_1+\frac{10^2}{81^n} C_2-\frac{10^3}{81^n} \cdot{ }^{2 n} C_3+\ldots+\frac{10^{2 n}}{81^n}\) is

1 2
2 0
3 \(\frac{1}{2}\)
4 1
Binomial Theorem and its Simple Application

119573 In the expansion of \(\left(1+x+x^3+x^4\right)^{10}\), the coefficient of \(x^4\) is

1 \({ }^{40} \mathrm{C}_4\)
2 \({ }^{10} \mathrm{C}_4\)
3 210
4 310
Binomial Theorem and its Simple Application

119574 If \(n\) is even, then in the expansion of \(\left(1+\frac{x^2}{2 !}+\frac{x^4}{2 !}+\ldots\right)^2\), then the coefficient of \(x^n\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{n} !}\)
2 \(\frac{2^{\mathrm{n}}-2}{\mathrm{n} !}\)
3 \(\frac{2^{\mathrm{n}-1}-1}{\mathrm{n} !}\)
4 \(\frac{2^{n-1}}{n !}\)
Binomial Theorem and its Simple Application

119575 The coefficient of \(x^{20}\) in the expansion of \(\left(1+3 x+3 x^2+x^3\right)^{20}\) is

1 \({ }^{60} \mathrm{C}_{40}\)
2 \({ }^{30} \mathrm{C}_{20}\)
3 \({ }^{15} \mathrm{C}_2\)
4 None of these
Binomial Theorem and its Simple Application

119571 The value of \(r\) for which the coefficients of \((r-5)\) th and \((3 r+1)\) th terms in the expansion of \((1+x)^{12}\) are equal, is

1 4
2 9
3 12
4 None of these
Binomial Theorem and its Simple Application

119572 The value of \(\frac{1}{81^n}-\frac{10}{81^n}{ }^{2 n} C_1+\frac{10^2}{81^n} C_2-\frac{10^3}{81^n} \cdot{ }^{2 n} C_3+\ldots+\frac{10^{2 n}}{81^n}\) is

1 2
2 0
3 \(\frac{1}{2}\)
4 1
Binomial Theorem and its Simple Application

119573 In the expansion of \(\left(1+x+x^3+x^4\right)^{10}\), the coefficient of \(x^4\) is

1 \({ }^{40} \mathrm{C}_4\)
2 \({ }^{10} \mathrm{C}_4\)
3 210
4 310
Binomial Theorem and its Simple Application

119574 If \(n\) is even, then in the expansion of \(\left(1+\frac{x^2}{2 !}+\frac{x^4}{2 !}+\ldots\right)^2\), then the coefficient of \(x^n\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{n} !}\)
2 \(\frac{2^{\mathrm{n}}-2}{\mathrm{n} !}\)
3 \(\frac{2^{\mathrm{n}-1}-1}{\mathrm{n} !}\)
4 \(\frac{2^{n-1}}{n !}\)
Binomial Theorem and its Simple Application

119575 The coefficient of \(x^{20}\) in the expansion of \(\left(1+3 x+3 x^2+x^3\right)^{20}\) is

1 \({ }^{60} \mathrm{C}_{40}\)
2 \({ }^{30} \mathrm{C}_{20}\)
3 \({ }^{15} \mathrm{C}_2\)
4 None of these
Binomial Theorem and its Simple Application

119571 The value of \(r\) for which the coefficients of \((r-5)\) th and \((3 r+1)\) th terms in the expansion of \((1+x)^{12}\) are equal, is

1 4
2 9
3 12
4 None of these
Binomial Theorem and its Simple Application

119572 The value of \(\frac{1}{81^n}-\frac{10}{81^n}{ }^{2 n} C_1+\frac{10^2}{81^n} C_2-\frac{10^3}{81^n} \cdot{ }^{2 n} C_3+\ldots+\frac{10^{2 n}}{81^n}\) is

1 2
2 0
3 \(\frac{1}{2}\)
4 1
Binomial Theorem and its Simple Application

119573 In the expansion of \(\left(1+x+x^3+x^4\right)^{10}\), the coefficient of \(x^4\) is

1 \({ }^{40} \mathrm{C}_4\)
2 \({ }^{10} \mathrm{C}_4\)
3 210
4 310
Binomial Theorem and its Simple Application

119574 If \(n\) is even, then in the expansion of \(\left(1+\frac{x^2}{2 !}+\frac{x^4}{2 !}+\ldots\right)^2\), then the coefficient of \(x^n\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{n} !}\)
2 \(\frac{2^{\mathrm{n}}-2}{\mathrm{n} !}\)
3 \(\frac{2^{\mathrm{n}-1}-1}{\mathrm{n} !}\)
4 \(\frac{2^{n-1}}{n !}\)
Binomial Theorem and its Simple Application

119575 The coefficient of \(x^{20}\) in the expansion of \(\left(1+3 x+3 x^2+x^3\right)^{20}\) is

1 \({ }^{60} \mathrm{C}_{40}\)
2 \({ }^{30} \mathrm{C}_{20}\)
3 \({ }^{15} \mathrm{C}_2\)
4 None of these
Binomial Theorem and its Simple Application

119571 The value of \(r\) for which the coefficients of \((r-5)\) th and \((3 r+1)\) th terms in the expansion of \((1+x)^{12}\) are equal, is

1 4
2 9
3 12
4 None of these
Binomial Theorem and its Simple Application

119572 The value of \(\frac{1}{81^n}-\frac{10}{81^n}{ }^{2 n} C_1+\frac{10^2}{81^n} C_2-\frac{10^3}{81^n} \cdot{ }^{2 n} C_3+\ldots+\frac{10^{2 n}}{81^n}\) is

1 2
2 0
3 \(\frac{1}{2}\)
4 1
Binomial Theorem and its Simple Application

119573 In the expansion of \(\left(1+x+x^3+x^4\right)^{10}\), the coefficient of \(x^4\) is

1 \({ }^{40} \mathrm{C}_4\)
2 \({ }^{10} \mathrm{C}_4\)
3 210
4 310
Binomial Theorem and its Simple Application

119574 If \(n\) is even, then in the expansion of \(\left(1+\frac{x^2}{2 !}+\frac{x^4}{2 !}+\ldots\right)^2\), then the coefficient of \(x^n\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{n} !}\)
2 \(\frac{2^{\mathrm{n}}-2}{\mathrm{n} !}\)
3 \(\frac{2^{\mathrm{n}-1}-1}{\mathrm{n} !}\)
4 \(\frac{2^{n-1}}{n !}\)
Binomial Theorem and its Simple Application

119575 The coefficient of \(x^{20}\) in the expansion of \(\left(1+3 x+3 x^2+x^3\right)^{20}\) is

1 \({ }^{60} \mathrm{C}_{40}\)
2 \({ }^{30} \mathrm{C}_{20}\)
3 \({ }^{15} \mathrm{C}_2\)
4 None of these
Binomial Theorem and its Simple Application

119571 The value of \(r\) for which the coefficients of \((r-5)\) th and \((3 r+1)\) th terms in the expansion of \((1+x)^{12}\) are equal, is

1 4
2 9
3 12
4 None of these
Binomial Theorem and its Simple Application

119572 The value of \(\frac{1}{81^n}-\frac{10}{81^n}{ }^{2 n} C_1+\frac{10^2}{81^n} C_2-\frac{10^3}{81^n} \cdot{ }^{2 n} C_3+\ldots+\frac{10^{2 n}}{81^n}\) is

1 2
2 0
3 \(\frac{1}{2}\)
4 1
Binomial Theorem and its Simple Application

119573 In the expansion of \(\left(1+x+x^3+x^4\right)^{10}\), the coefficient of \(x^4\) is

1 \({ }^{40} \mathrm{C}_4\)
2 \({ }^{10} \mathrm{C}_4\)
3 210
4 310
Binomial Theorem and its Simple Application

119574 If \(n\) is even, then in the expansion of \(\left(1+\frac{x^2}{2 !}+\frac{x^4}{2 !}+\ldots\right)^2\), then the coefficient of \(x^n\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{n} !}\)
2 \(\frac{2^{\mathrm{n}}-2}{\mathrm{n} !}\)
3 \(\frac{2^{\mathrm{n}-1}-1}{\mathrm{n} !}\)
4 \(\frac{2^{n-1}}{n !}\)
Binomial Theorem and its Simple Application

119575 The coefficient of \(x^{20}\) in the expansion of \(\left(1+3 x+3 x^2+x^3\right)^{20}\) is

1 \({ }^{60} \mathrm{C}_{40}\)
2 \({ }^{30} \mathrm{C}_{20}\)
3 \({ }^{15} \mathrm{C}_2\)
4 None of these