119578
Let
\(\mathrm{S}=\frac{\mathbf{2}}{\mathbf{1}}{ }^{\mathrm{n}} \mathrm{C}_0+\frac{\mathbf{2}^2}{\mathbf{2}}{ }^{\mathrm{n}} \mathrm{C}_1+\frac{\mathbf{2}^3}{\mathbf{3}}{ }^{\mathrm{n}} \mathrm{C}_2+\ldots+\frac{\mathbf{2}^{\mathrm{n}+1}}{\mathrm{n}+\mathbf{1}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\). The n, \(S\) equals
119578
Let
\(\mathrm{S}=\frac{\mathbf{2}}{\mathbf{1}}{ }^{\mathrm{n}} \mathrm{C}_0+\frac{\mathbf{2}^2}{\mathbf{2}}{ }^{\mathrm{n}} \mathrm{C}_1+\frac{\mathbf{2}^3}{\mathbf{3}}{ }^{\mathrm{n}} \mathrm{C}_2+\ldots+\frac{\mathbf{2}^{\mathrm{n}+1}}{\mathrm{n}+\mathbf{1}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\). The n, \(S\) equals
119578
Let
\(\mathrm{S}=\frac{\mathbf{2}}{\mathbf{1}}{ }^{\mathrm{n}} \mathrm{C}_0+\frac{\mathbf{2}^2}{\mathbf{2}}{ }^{\mathrm{n}} \mathrm{C}_1+\frac{\mathbf{2}^3}{\mathbf{3}}{ }^{\mathrm{n}} \mathrm{C}_2+\ldots+\frac{\mathbf{2}^{\mathrm{n}+1}}{\mathrm{n}+\mathbf{1}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\). The n, \(S\) equals
119578
Let
\(\mathrm{S}=\frac{\mathbf{2}}{\mathbf{1}}{ }^{\mathrm{n}} \mathrm{C}_0+\frac{\mathbf{2}^2}{\mathbf{2}}{ }^{\mathrm{n}} \mathrm{C}_1+\frac{\mathbf{2}^3}{\mathbf{3}}{ }^{\mathrm{n}} \mathrm{C}_2+\ldots+\frac{\mathbf{2}^{\mathrm{n}+1}}{\mathrm{n}+\mathbf{1}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\). The n, \(S\) equals