119570
The sum of the series
\(\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r}} \mathrm{C}_{\mathrm{r}}\left(\frac{1}{\mathbf{2}^{\mathrm{r}}}+\frac{\mathbf{3}^{\mathrm{r}}}{\mathbf{2}^{2 \mathrm{r}}}+\frac{\mathbf{7}^{\mathrm{r}}}{\mathbf{2}^{3 \mathrm{r}}}+\frac{\mathbf{1 5}^{\mathrm{r}}}{\mathbf{2}^{4 \mathrm{r}}}+\ldots . \mathrm{m} \text { terms }\right)\)
is
119570
The sum of the series
\(\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r}} \mathrm{C}_{\mathrm{r}}\left(\frac{1}{\mathbf{2}^{\mathrm{r}}}+\frac{\mathbf{3}^{\mathrm{r}}}{\mathbf{2}^{2 \mathrm{r}}}+\frac{\mathbf{7}^{\mathrm{r}}}{\mathbf{2}^{3 \mathrm{r}}}+\frac{\mathbf{1 5}^{\mathrm{r}}}{\mathbf{2}^{4 \mathrm{r}}}+\ldots . \mathrm{m} \text { terms }\right)\)
is
119570
The sum of the series
\(\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r}} \mathrm{C}_{\mathrm{r}}\left(\frac{1}{\mathbf{2}^{\mathrm{r}}}+\frac{\mathbf{3}^{\mathrm{r}}}{\mathbf{2}^{2 \mathrm{r}}}+\frac{\mathbf{7}^{\mathrm{r}}}{\mathbf{2}^{3 \mathrm{r}}}+\frac{\mathbf{1 5}^{\mathrm{r}}}{\mathbf{2}^{4 \mathrm{r}}}+\ldots . \mathrm{m} \text { terms }\right)\)
is
119570
The sum of the series
\(\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r}} \mathrm{C}_{\mathrm{r}}\left(\frac{1}{\mathbf{2}^{\mathrm{r}}}+\frac{\mathbf{3}^{\mathrm{r}}}{\mathbf{2}^{2 \mathrm{r}}}+\frac{\mathbf{7}^{\mathrm{r}}}{\mathbf{2}^{3 \mathrm{r}}}+\frac{\mathbf{1 5}^{\mathrm{r}}}{\mathbf{2}^{4 \mathrm{r}}}+\ldots . \mathrm{m} \text { terms }\right)\)
is