Binomial Expansion
Binomial Theorem and its Simple Application

119390 If
\((1-x)^n=C_0-C_1 x+C_2 x^2-C_3 x^3+\ldots .+(-1)^n C_n x^n\)
, then \(\frac{\mathrm{C}_0}{2}-\frac{\mathrm{C}_1}{3}+\frac{\mathrm{C}_2}{4}-\frac{\mathrm{C}_3}{5}+\ldots .+(-1)^{\mathrm{n}} \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{n}+2}\) is

1 \(\frac{1}{\mathrm{n}(\mathrm{n}+1)}\)
2 \(\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
3 \(\frac{1}{(n+1)(n+3)}\)
4 \(\frac{1}{\mathrm{n}(\mathrm{n}+3)}\)
5 \(\frac{1}{(n+2)(n+3)}\)
Binomial Theorem and its Simple Application

119391 If the expansion of \(\left(\frac{3 \sqrt{x}}{7}-\frac{5}{2 x \sqrt{x}}\right)^{13 n}\) contains a term independent of \(x\) in the \(14^{\text {th }}\) term, then \(n\) should be

1 10
2 5
3 6
4 4
5 11
Binomial Theorem and its Simple Application

119392 If \(n>1\), then \((1+x)^n-n x-1\) is divisible by

1 \(x^2\)
2 \(x^3\)
3 \(\mathrm{x}^4\)
4 \(x^5\)
Binomial Theorem and its Simple Application

119552 The term independent of \(x\) in expansion of \(\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}\) is

1 120
2 210
3 310
4 4
Binomial Theorem and its Simple Application

119390 If
\((1-x)^n=C_0-C_1 x+C_2 x^2-C_3 x^3+\ldots .+(-1)^n C_n x^n\)
, then \(\frac{\mathrm{C}_0}{2}-\frac{\mathrm{C}_1}{3}+\frac{\mathrm{C}_2}{4}-\frac{\mathrm{C}_3}{5}+\ldots .+(-1)^{\mathrm{n}} \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{n}+2}\) is

1 \(\frac{1}{\mathrm{n}(\mathrm{n}+1)}\)
2 \(\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
3 \(\frac{1}{(n+1)(n+3)}\)
4 \(\frac{1}{\mathrm{n}(\mathrm{n}+3)}\)
5 \(\frac{1}{(n+2)(n+3)}\)
Binomial Theorem and its Simple Application

119391 If the expansion of \(\left(\frac{3 \sqrt{x}}{7}-\frac{5}{2 x \sqrt{x}}\right)^{13 n}\) contains a term independent of \(x\) in the \(14^{\text {th }}\) term, then \(n\) should be

1 10
2 5
3 6
4 4
5 11
Binomial Theorem and its Simple Application

119392 If \(n>1\), then \((1+x)^n-n x-1\) is divisible by

1 \(x^2\)
2 \(x^3\)
3 \(\mathrm{x}^4\)
4 \(x^5\)
Binomial Theorem and its Simple Application

119552 The term independent of \(x\) in expansion of \(\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}\) is

1 120
2 210
3 310
4 4
Binomial Theorem and its Simple Application

119390 If
\((1-x)^n=C_0-C_1 x+C_2 x^2-C_3 x^3+\ldots .+(-1)^n C_n x^n\)
, then \(\frac{\mathrm{C}_0}{2}-\frac{\mathrm{C}_1}{3}+\frac{\mathrm{C}_2}{4}-\frac{\mathrm{C}_3}{5}+\ldots .+(-1)^{\mathrm{n}} \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{n}+2}\) is

1 \(\frac{1}{\mathrm{n}(\mathrm{n}+1)}\)
2 \(\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
3 \(\frac{1}{(n+1)(n+3)}\)
4 \(\frac{1}{\mathrm{n}(\mathrm{n}+3)}\)
5 \(\frac{1}{(n+2)(n+3)}\)
Binomial Theorem and its Simple Application

119391 If the expansion of \(\left(\frac{3 \sqrt{x}}{7}-\frac{5}{2 x \sqrt{x}}\right)^{13 n}\) contains a term independent of \(x\) in the \(14^{\text {th }}\) term, then \(n\) should be

1 10
2 5
3 6
4 4
5 11
Binomial Theorem and its Simple Application

119392 If \(n>1\), then \((1+x)^n-n x-1\) is divisible by

1 \(x^2\)
2 \(x^3\)
3 \(\mathrm{x}^4\)
4 \(x^5\)
Binomial Theorem and its Simple Application

119552 The term independent of \(x\) in expansion of \(\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}\) is

1 120
2 210
3 310
4 4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119390 If
\((1-x)^n=C_0-C_1 x+C_2 x^2-C_3 x^3+\ldots .+(-1)^n C_n x^n\)
, then \(\frac{\mathrm{C}_0}{2}-\frac{\mathrm{C}_1}{3}+\frac{\mathrm{C}_2}{4}-\frac{\mathrm{C}_3}{5}+\ldots .+(-1)^{\mathrm{n}} \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{n}+2}\) is

1 \(\frac{1}{\mathrm{n}(\mathrm{n}+1)}\)
2 \(\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
3 \(\frac{1}{(n+1)(n+3)}\)
4 \(\frac{1}{\mathrm{n}(\mathrm{n}+3)}\)
5 \(\frac{1}{(n+2)(n+3)}\)
Binomial Theorem and its Simple Application

119391 If the expansion of \(\left(\frac{3 \sqrt{x}}{7}-\frac{5}{2 x \sqrt{x}}\right)^{13 n}\) contains a term independent of \(x\) in the \(14^{\text {th }}\) term, then \(n\) should be

1 10
2 5
3 6
4 4
5 11
Binomial Theorem and its Simple Application

119392 If \(n>1\), then \((1+x)^n-n x-1\) is divisible by

1 \(x^2\)
2 \(x^3\)
3 \(\mathrm{x}^4\)
4 \(x^5\)
Binomial Theorem and its Simple Application

119552 The term independent of \(x\) in expansion of \(\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}\) is

1 120
2 210
3 310
4 4