Binomial Expansion
Binomial Theorem and its Simple Application

119553 If the coefficients of \(x^5\) and \(x^6\) in \(\left(2+\frac{x}{3}\right)^n\) are equal, then \(\mathbf{n}\) is

1 51
2 31
3 41
4 None of these
Binomial Theorem and its Simple Application

119554 If in the expansion of \((1+P x)^n, n \in N\), the coefficient of \(x\) and \(x^2\) are 8 and 24 , then

1 \(\mathrm{n}=3, \mathrm{p}=2\)
2 \(\mathrm{n}=5, \mathrm{p}=3\)
3 \(\mathrm{n}=4, \mathrm{p}=3\)
4 \(\mathrm{n}=4, \mathrm{p}=2\)
Binomial Theorem and its Simple Application

119556 Given the positive integers \(r>1, n>2\) and the coefficients of \((3 r)^{\text {th }}\) and \((r+2)^{\text {th }}\) terms in the expansion of \((1+x)^{2 n}\) and equal, then \(n=\)

1 \(2 \mathrm{r}\)
2 \(2 \mathrm{r}-1\)
3 \(2 \mathrm{r}+1\)
4 \(3 \mathrm{r}\)
Binomial Theorem and its Simple Application

119557 The greatest value of the term independent of \(x\) in the expansion of ( \(x \quad \sin\) \(\left.\alpha+\mathbf{x}^{-1} \cos \alpha\right)^{10}, \alpha \in R\), is

1 \(\frac{10 !}{2^5}\)
2 \(\frac{10 !}{(5 !)^2}\)
3 \(\frac{1}{2^5} \frac{10 !}{(5 !)^2}\)
4 None of these
Binomial Theorem and its Simple Application

119558 If \(x^m\) occurs in the expansion of \(\left(x+\frac{1}{x^2}\right)^{2 n}\) then the coefficient of \(\mathrm{x}^{\mathrm{m}}\) is

1 \(\frac{(2 n) !}{\left(\frac{2 n-m}{3}\right) !\left(\frac{4 n+m}{3}\right) !}\)
2 \(\frac{(2 n) !}{n !(2 n-m) !}\)
3 \(\frac{(2 n) ! 3 ! 3 !}{(2 n-m) !}\)
4 None of these
Binomial Theorem and its Simple Application

119553 If the coefficients of \(x^5\) and \(x^6\) in \(\left(2+\frac{x}{3}\right)^n\) are equal, then \(\mathbf{n}\) is

1 51
2 31
3 41
4 None of these
Binomial Theorem and its Simple Application

119554 If in the expansion of \((1+P x)^n, n \in N\), the coefficient of \(x\) and \(x^2\) are 8 and 24 , then

1 \(\mathrm{n}=3, \mathrm{p}=2\)
2 \(\mathrm{n}=5, \mathrm{p}=3\)
3 \(\mathrm{n}=4, \mathrm{p}=3\)
4 \(\mathrm{n}=4, \mathrm{p}=2\)
Binomial Theorem and its Simple Application

119556 Given the positive integers \(r>1, n>2\) and the coefficients of \((3 r)^{\text {th }}\) and \((r+2)^{\text {th }}\) terms in the expansion of \((1+x)^{2 n}\) and equal, then \(n=\)

1 \(2 \mathrm{r}\)
2 \(2 \mathrm{r}-1\)
3 \(2 \mathrm{r}+1\)
4 \(3 \mathrm{r}\)
Binomial Theorem and its Simple Application

119557 The greatest value of the term independent of \(x\) in the expansion of ( \(x \quad \sin\) \(\left.\alpha+\mathbf{x}^{-1} \cos \alpha\right)^{10}, \alpha \in R\), is

1 \(\frac{10 !}{2^5}\)
2 \(\frac{10 !}{(5 !)^2}\)
3 \(\frac{1}{2^5} \frac{10 !}{(5 !)^2}\)
4 None of these
Binomial Theorem and its Simple Application

119558 If \(x^m\) occurs in the expansion of \(\left(x+\frac{1}{x^2}\right)^{2 n}\) then the coefficient of \(\mathrm{x}^{\mathrm{m}}\) is

1 \(\frac{(2 n) !}{\left(\frac{2 n-m}{3}\right) !\left(\frac{4 n+m}{3}\right) !}\)
2 \(\frac{(2 n) !}{n !(2 n-m) !}\)
3 \(\frac{(2 n) ! 3 ! 3 !}{(2 n-m) !}\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119553 If the coefficients of \(x^5\) and \(x^6\) in \(\left(2+\frac{x}{3}\right)^n\) are equal, then \(\mathbf{n}\) is

1 51
2 31
3 41
4 None of these
Binomial Theorem and its Simple Application

119554 If in the expansion of \((1+P x)^n, n \in N\), the coefficient of \(x\) and \(x^2\) are 8 and 24 , then

1 \(\mathrm{n}=3, \mathrm{p}=2\)
2 \(\mathrm{n}=5, \mathrm{p}=3\)
3 \(\mathrm{n}=4, \mathrm{p}=3\)
4 \(\mathrm{n}=4, \mathrm{p}=2\)
Binomial Theorem and its Simple Application

119556 Given the positive integers \(r>1, n>2\) and the coefficients of \((3 r)^{\text {th }}\) and \((r+2)^{\text {th }}\) terms in the expansion of \((1+x)^{2 n}\) and equal, then \(n=\)

1 \(2 \mathrm{r}\)
2 \(2 \mathrm{r}-1\)
3 \(2 \mathrm{r}+1\)
4 \(3 \mathrm{r}\)
Binomial Theorem and its Simple Application

119557 The greatest value of the term independent of \(x\) in the expansion of ( \(x \quad \sin\) \(\left.\alpha+\mathbf{x}^{-1} \cos \alpha\right)^{10}, \alpha \in R\), is

1 \(\frac{10 !}{2^5}\)
2 \(\frac{10 !}{(5 !)^2}\)
3 \(\frac{1}{2^5} \frac{10 !}{(5 !)^2}\)
4 None of these
Binomial Theorem and its Simple Application

119558 If \(x^m\) occurs in the expansion of \(\left(x+\frac{1}{x^2}\right)^{2 n}\) then the coefficient of \(\mathrm{x}^{\mathrm{m}}\) is

1 \(\frac{(2 n) !}{\left(\frac{2 n-m}{3}\right) !\left(\frac{4 n+m}{3}\right) !}\)
2 \(\frac{(2 n) !}{n !(2 n-m) !}\)
3 \(\frac{(2 n) ! 3 ! 3 !}{(2 n-m) !}\)
4 None of these
Binomial Theorem and its Simple Application

119553 If the coefficients of \(x^5\) and \(x^6\) in \(\left(2+\frac{x}{3}\right)^n\) are equal, then \(\mathbf{n}\) is

1 51
2 31
3 41
4 None of these
Binomial Theorem and its Simple Application

119554 If in the expansion of \((1+P x)^n, n \in N\), the coefficient of \(x\) and \(x^2\) are 8 and 24 , then

1 \(\mathrm{n}=3, \mathrm{p}=2\)
2 \(\mathrm{n}=5, \mathrm{p}=3\)
3 \(\mathrm{n}=4, \mathrm{p}=3\)
4 \(\mathrm{n}=4, \mathrm{p}=2\)
Binomial Theorem and its Simple Application

119556 Given the positive integers \(r>1, n>2\) and the coefficients of \((3 r)^{\text {th }}\) and \((r+2)^{\text {th }}\) terms in the expansion of \((1+x)^{2 n}\) and equal, then \(n=\)

1 \(2 \mathrm{r}\)
2 \(2 \mathrm{r}-1\)
3 \(2 \mathrm{r}+1\)
4 \(3 \mathrm{r}\)
Binomial Theorem and its Simple Application

119557 The greatest value of the term independent of \(x\) in the expansion of ( \(x \quad \sin\) \(\left.\alpha+\mathbf{x}^{-1} \cos \alpha\right)^{10}, \alpha \in R\), is

1 \(\frac{10 !}{2^5}\)
2 \(\frac{10 !}{(5 !)^2}\)
3 \(\frac{1}{2^5} \frac{10 !}{(5 !)^2}\)
4 None of these
Binomial Theorem and its Simple Application

119558 If \(x^m\) occurs in the expansion of \(\left(x+\frac{1}{x^2}\right)^{2 n}\) then the coefficient of \(\mathrm{x}^{\mathrm{m}}\) is

1 \(\frac{(2 n) !}{\left(\frac{2 n-m}{3}\right) !\left(\frac{4 n+m}{3}\right) !}\)
2 \(\frac{(2 n) !}{n !(2 n-m) !}\)
3 \(\frac{(2 n) ! 3 ! 3 !}{(2 n-m) !}\)
4 None of these
Binomial Theorem and its Simple Application

119553 If the coefficients of \(x^5\) and \(x^6\) in \(\left(2+\frac{x}{3}\right)^n\) are equal, then \(\mathbf{n}\) is

1 51
2 31
3 41
4 None of these
Binomial Theorem and its Simple Application

119554 If in the expansion of \((1+P x)^n, n \in N\), the coefficient of \(x\) and \(x^2\) are 8 and 24 , then

1 \(\mathrm{n}=3, \mathrm{p}=2\)
2 \(\mathrm{n}=5, \mathrm{p}=3\)
3 \(\mathrm{n}=4, \mathrm{p}=3\)
4 \(\mathrm{n}=4, \mathrm{p}=2\)
Binomial Theorem and its Simple Application

119556 Given the positive integers \(r>1, n>2\) and the coefficients of \((3 r)^{\text {th }}\) and \((r+2)^{\text {th }}\) terms in the expansion of \((1+x)^{2 n}\) and equal, then \(n=\)

1 \(2 \mathrm{r}\)
2 \(2 \mathrm{r}-1\)
3 \(2 \mathrm{r}+1\)
4 \(3 \mathrm{r}\)
Binomial Theorem and its Simple Application

119557 The greatest value of the term independent of \(x\) in the expansion of ( \(x \quad \sin\) \(\left.\alpha+\mathbf{x}^{-1} \cos \alpha\right)^{10}, \alpha \in R\), is

1 \(\frac{10 !}{2^5}\)
2 \(\frac{10 !}{(5 !)^2}\)
3 \(\frac{1}{2^5} \frac{10 !}{(5 !)^2}\)
4 None of these
Binomial Theorem and its Simple Application

119558 If \(x^m\) occurs in the expansion of \(\left(x+\frac{1}{x^2}\right)^{2 n}\) then the coefficient of \(\mathrm{x}^{\mathrm{m}}\) is

1 \(\frac{(2 n) !}{\left(\frac{2 n-m}{3}\right) !\left(\frac{4 n+m}{3}\right) !}\)
2 \(\frac{(2 n) !}{n !(2 n-m) !}\)
3 \(\frac{(2 n) ! 3 ! 3 !}{(2 n-m) !}\)
4 None of these