Binomial Expansion
Binomial Theorem and its Simple Application

119386 \((\sqrt{3}+\sqrt{2})^4-(\sqrt{3}-\sqrt{2})^4=\)

1 \(20 \sqrt{6}\)
2 \(30 \sqrt{6}\)
3 \(5 \sqrt{10}\)
4 \(40 \sqrt{6}\)
5 \(10 \sqrt{6}\)
Binomial Theorem and its Simple Application

119387 Let \(t_n\) denote the \(n^{\text {th }}\) term in a binomial expansion. If \(\frac{t_6}{t_5}\) in the expansion of \((a+b)^{n+4}\) and \(\frac{t_5}{t_4}\) in the expansion of \((a+b)^n\) are equal, then \(\mathbf{n}\) is equal to

1 9
2 11
3 13
4 15
5 17
Binomial Theorem and its Simple Application

119388 If \(\left(1+x+x^2\right)^n=1+a_1 x+a_2 x^2+\ldots .+a_{2 n} x^{2 n}\), then \(2 a_1-3 a_2+\ldots-(2 n+1) a_{2 n}\) is equal to

1 \(\mathrm{n}\)
2 \(-n\)
3 \(n+1\)
4 \(-\mathrm{n}-1\)
5 \(-\mathrm{n}+1\)
Binomial Theorem and its Simple Application

119389 If the average of the numbers \(1,2,3, \ldots 98,99, x\) is \(100 x\), then the value of \(x\) is

1 \(\frac{51}{100}\)
2 \(\frac{50}{99}\)
3 \(\frac{1}{2}\)
4 \(\frac{51}{99}\)
5 \(\frac{50}{101}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119386 \((\sqrt{3}+\sqrt{2})^4-(\sqrt{3}-\sqrt{2})^4=\)

1 \(20 \sqrt{6}\)
2 \(30 \sqrt{6}\)
3 \(5 \sqrt{10}\)
4 \(40 \sqrt{6}\)
5 \(10 \sqrt{6}\)
Binomial Theorem and its Simple Application

119387 Let \(t_n\) denote the \(n^{\text {th }}\) term in a binomial expansion. If \(\frac{t_6}{t_5}\) in the expansion of \((a+b)^{n+4}\) and \(\frac{t_5}{t_4}\) in the expansion of \((a+b)^n\) are equal, then \(\mathbf{n}\) is equal to

1 9
2 11
3 13
4 15
5 17
Binomial Theorem and its Simple Application

119388 If \(\left(1+x+x^2\right)^n=1+a_1 x+a_2 x^2+\ldots .+a_{2 n} x^{2 n}\), then \(2 a_1-3 a_2+\ldots-(2 n+1) a_{2 n}\) is equal to

1 \(\mathrm{n}\)
2 \(-n\)
3 \(n+1\)
4 \(-\mathrm{n}-1\)
5 \(-\mathrm{n}+1\)
Binomial Theorem and its Simple Application

119389 If the average of the numbers \(1,2,3, \ldots 98,99, x\) is \(100 x\), then the value of \(x\) is

1 \(\frac{51}{100}\)
2 \(\frac{50}{99}\)
3 \(\frac{1}{2}\)
4 \(\frac{51}{99}\)
5 \(\frac{50}{101}\)
Binomial Theorem and its Simple Application

119386 \((\sqrt{3}+\sqrt{2})^4-(\sqrt{3}-\sqrt{2})^4=\)

1 \(20 \sqrt{6}\)
2 \(30 \sqrt{6}\)
3 \(5 \sqrt{10}\)
4 \(40 \sqrt{6}\)
5 \(10 \sqrt{6}\)
Binomial Theorem and its Simple Application

119387 Let \(t_n\) denote the \(n^{\text {th }}\) term in a binomial expansion. If \(\frac{t_6}{t_5}\) in the expansion of \((a+b)^{n+4}\) and \(\frac{t_5}{t_4}\) in the expansion of \((a+b)^n\) are equal, then \(\mathbf{n}\) is equal to

1 9
2 11
3 13
4 15
5 17
Binomial Theorem and its Simple Application

119388 If \(\left(1+x+x^2\right)^n=1+a_1 x+a_2 x^2+\ldots .+a_{2 n} x^{2 n}\), then \(2 a_1-3 a_2+\ldots-(2 n+1) a_{2 n}\) is equal to

1 \(\mathrm{n}\)
2 \(-n\)
3 \(n+1\)
4 \(-\mathrm{n}-1\)
5 \(-\mathrm{n}+1\)
Binomial Theorem and its Simple Application

119389 If the average of the numbers \(1,2,3, \ldots 98,99, x\) is \(100 x\), then the value of \(x\) is

1 \(\frac{51}{100}\)
2 \(\frac{50}{99}\)
3 \(\frac{1}{2}\)
4 \(\frac{51}{99}\)
5 \(\frac{50}{101}\)
Binomial Theorem and its Simple Application

119386 \((\sqrt{3}+\sqrt{2})^4-(\sqrt{3}-\sqrt{2})^4=\)

1 \(20 \sqrt{6}\)
2 \(30 \sqrt{6}\)
3 \(5 \sqrt{10}\)
4 \(40 \sqrt{6}\)
5 \(10 \sqrt{6}\)
Binomial Theorem and its Simple Application

119387 Let \(t_n\) denote the \(n^{\text {th }}\) term in a binomial expansion. If \(\frac{t_6}{t_5}\) in the expansion of \((a+b)^{n+4}\) and \(\frac{t_5}{t_4}\) in the expansion of \((a+b)^n\) are equal, then \(\mathbf{n}\) is equal to

1 9
2 11
3 13
4 15
5 17
Binomial Theorem and its Simple Application

119388 If \(\left(1+x+x^2\right)^n=1+a_1 x+a_2 x^2+\ldots .+a_{2 n} x^{2 n}\), then \(2 a_1-3 a_2+\ldots-(2 n+1) a_{2 n}\) is equal to

1 \(\mathrm{n}\)
2 \(-n\)
3 \(n+1\)
4 \(-\mathrm{n}-1\)
5 \(-\mathrm{n}+1\)
Binomial Theorem and its Simple Application

119389 If the average of the numbers \(1,2,3, \ldots 98,99, x\) is \(100 x\), then the value of \(x\) is

1 \(\frac{51}{100}\)
2 \(\frac{50}{99}\)
3 \(\frac{1}{2}\)
4 \(\frac{51}{99}\)
5 \(\frac{50}{101}\)