Equation of a Line, Sphere, and a Plane in Different Forms
Three Dimensional Geometry

121256 If the line passing through \(A(\lambda, 2,3)\) and \(B(1,2, \mu)\) is parallel to the line \(\mathbf{x}-\mathbf{1}=\mathbf{y}-\mathbf{2}=\mathbf{z}-\mathbf{3}\), then \(\lambda+\mu=\)

1 1
2 4
3 2
4 3
Three Dimensional Geometry

121257 Equation of planes parallel to the plane \(x-2 y+2 z+4=0\) which are at a distance of one unit form the point \((1,2,3)\) are

1 \(x+2 y+2 z=6, x+2 y+2 z=0\)
2 \(x-2 y+2 z=0, x-2 y+2 z-6=0\)
3 \(x-2 y-6=0, x-2 y+z=6\)
4 \(x+2 y+2 z=-6, x+2 y+2 z=5\)
Three Dimensional Geometry

121258 If the foot of the perpendicular drawn form the point \((0,0,0)\) to the plane is \((4,-2,-5)\), then the equation of the plane is

1 \(4 x-2 y+5 z=-5\)
2 \(4 x-2 y-5 z=45\)
3 \(4 x+2 y-5 z=37\)
4 \(4 x+2 y+5 z=-13\)
Three Dimensional Geometry

121260 If lines \(\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}\) and \(x-3=\frac{y-k}{2}=z\) interest, then the value of \(k\) is

1 \(\frac{9}{2}\)
2 \(\frac{1}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{7}{2}\)
Three Dimensional Geometry

121261 If planes \(x-c y-b y=0, c x-y+a z=0\) and \(b x\) \(+a y-z=0\) pass through a straight line, then \(\mathbf{a}^2+\mathbf{b}^2+\mathbf{c}^2=\)

1 \(1-\mathrm{abc}\)
2 abc -1
3 1-2abc
4 \(2 \mathrm{abc}-1\)
Three Dimensional Geometry

121256 If the line passing through \(A(\lambda, 2,3)\) and \(B(1,2, \mu)\) is parallel to the line \(\mathbf{x}-\mathbf{1}=\mathbf{y}-\mathbf{2}=\mathbf{z}-\mathbf{3}\), then \(\lambda+\mu=\)

1 1
2 4
3 2
4 3
Three Dimensional Geometry

121257 Equation of planes parallel to the plane \(x-2 y+2 z+4=0\) which are at a distance of one unit form the point \((1,2,3)\) are

1 \(x+2 y+2 z=6, x+2 y+2 z=0\)
2 \(x-2 y+2 z=0, x-2 y+2 z-6=0\)
3 \(x-2 y-6=0, x-2 y+z=6\)
4 \(x+2 y+2 z=-6, x+2 y+2 z=5\)
Three Dimensional Geometry

121258 If the foot of the perpendicular drawn form the point \((0,0,0)\) to the plane is \((4,-2,-5)\), then the equation of the plane is

1 \(4 x-2 y+5 z=-5\)
2 \(4 x-2 y-5 z=45\)
3 \(4 x+2 y-5 z=37\)
4 \(4 x+2 y+5 z=-13\)
Three Dimensional Geometry

121260 If lines \(\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}\) and \(x-3=\frac{y-k}{2}=z\) interest, then the value of \(k\) is

1 \(\frac{9}{2}\)
2 \(\frac{1}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{7}{2}\)
Three Dimensional Geometry

121261 If planes \(x-c y-b y=0, c x-y+a z=0\) and \(b x\) \(+a y-z=0\) pass through a straight line, then \(\mathbf{a}^2+\mathbf{b}^2+\mathbf{c}^2=\)

1 \(1-\mathrm{abc}\)
2 abc -1
3 1-2abc
4 \(2 \mathrm{abc}-1\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121256 If the line passing through \(A(\lambda, 2,3)\) and \(B(1,2, \mu)\) is parallel to the line \(\mathbf{x}-\mathbf{1}=\mathbf{y}-\mathbf{2}=\mathbf{z}-\mathbf{3}\), then \(\lambda+\mu=\)

1 1
2 4
3 2
4 3
Three Dimensional Geometry

121257 Equation of planes parallel to the plane \(x-2 y+2 z+4=0\) which are at a distance of one unit form the point \((1,2,3)\) are

1 \(x+2 y+2 z=6, x+2 y+2 z=0\)
2 \(x-2 y+2 z=0, x-2 y+2 z-6=0\)
3 \(x-2 y-6=0, x-2 y+z=6\)
4 \(x+2 y+2 z=-6, x+2 y+2 z=5\)
Three Dimensional Geometry

121258 If the foot of the perpendicular drawn form the point \((0,0,0)\) to the plane is \((4,-2,-5)\), then the equation of the plane is

1 \(4 x-2 y+5 z=-5\)
2 \(4 x-2 y-5 z=45\)
3 \(4 x+2 y-5 z=37\)
4 \(4 x+2 y+5 z=-13\)
Three Dimensional Geometry

121260 If lines \(\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}\) and \(x-3=\frac{y-k}{2}=z\) interest, then the value of \(k\) is

1 \(\frac{9}{2}\)
2 \(\frac{1}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{7}{2}\)
Three Dimensional Geometry

121261 If planes \(x-c y-b y=0, c x-y+a z=0\) and \(b x\) \(+a y-z=0\) pass through a straight line, then \(\mathbf{a}^2+\mathbf{b}^2+\mathbf{c}^2=\)

1 \(1-\mathrm{abc}\)
2 abc -1
3 1-2abc
4 \(2 \mathrm{abc}-1\)
Three Dimensional Geometry

121256 If the line passing through \(A(\lambda, 2,3)\) and \(B(1,2, \mu)\) is parallel to the line \(\mathbf{x}-\mathbf{1}=\mathbf{y}-\mathbf{2}=\mathbf{z}-\mathbf{3}\), then \(\lambda+\mu=\)

1 1
2 4
3 2
4 3
Three Dimensional Geometry

121257 Equation of planes parallel to the plane \(x-2 y+2 z+4=0\) which are at a distance of one unit form the point \((1,2,3)\) are

1 \(x+2 y+2 z=6, x+2 y+2 z=0\)
2 \(x-2 y+2 z=0, x-2 y+2 z-6=0\)
3 \(x-2 y-6=0, x-2 y+z=6\)
4 \(x+2 y+2 z=-6, x+2 y+2 z=5\)
Three Dimensional Geometry

121258 If the foot of the perpendicular drawn form the point \((0,0,0)\) to the plane is \((4,-2,-5)\), then the equation of the plane is

1 \(4 x-2 y+5 z=-5\)
2 \(4 x-2 y-5 z=45\)
3 \(4 x+2 y-5 z=37\)
4 \(4 x+2 y+5 z=-13\)
Three Dimensional Geometry

121260 If lines \(\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}\) and \(x-3=\frac{y-k}{2}=z\) interest, then the value of \(k\) is

1 \(\frac{9}{2}\)
2 \(\frac{1}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{7}{2}\)
Three Dimensional Geometry

121261 If planes \(x-c y-b y=0, c x-y+a z=0\) and \(b x\) \(+a y-z=0\) pass through a straight line, then \(\mathbf{a}^2+\mathbf{b}^2+\mathbf{c}^2=\)

1 \(1-\mathrm{abc}\)
2 abc -1
3 1-2abc
4 \(2 \mathrm{abc}-1\)
Three Dimensional Geometry

121256 If the line passing through \(A(\lambda, 2,3)\) and \(B(1,2, \mu)\) is parallel to the line \(\mathbf{x}-\mathbf{1}=\mathbf{y}-\mathbf{2}=\mathbf{z}-\mathbf{3}\), then \(\lambda+\mu=\)

1 1
2 4
3 2
4 3
Three Dimensional Geometry

121257 Equation of planes parallel to the plane \(x-2 y+2 z+4=0\) which are at a distance of one unit form the point \((1,2,3)\) are

1 \(x+2 y+2 z=6, x+2 y+2 z=0\)
2 \(x-2 y+2 z=0, x-2 y+2 z-6=0\)
3 \(x-2 y-6=0, x-2 y+z=6\)
4 \(x+2 y+2 z=-6, x+2 y+2 z=5\)
Three Dimensional Geometry

121258 If the foot of the perpendicular drawn form the point \((0,0,0)\) to the plane is \((4,-2,-5)\), then the equation of the plane is

1 \(4 x-2 y+5 z=-5\)
2 \(4 x-2 y-5 z=45\)
3 \(4 x+2 y-5 z=37\)
4 \(4 x+2 y+5 z=-13\)
Three Dimensional Geometry

121260 If lines \(\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}\) and \(x-3=\frac{y-k}{2}=z\) interest, then the value of \(k\) is

1 \(\frac{9}{2}\)
2 \(\frac{1}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{7}{2}\)
Three Dimensional Geometry

121261 If planes \(x-c y-b y=0, c x-y+a z=0\) and \(b x\) \(+a y-z=0\) pass through a straight line, then \(\mathbf{a}^2+\mathbf{b}^2+\mathbf{c}^2=\)

1 \(1-\mathrm{abc}\)
2 abc -1
3 1-2abc
4 \(2 \mathrm{abc}-1\)