Equation of a Line, Sphere, and a Plane in Different Forms
Three Dimensional Geometry

121251 The equation of a line passing through the point \((2,4,6)\) and parallel to the line \(3 \mathrm{x}+4=4 \mathrm{y}-1=1-4 \mathrm{z}\) is

1 \(\frac{x-2}{-4}=\frac{y-4}{3}=\frac{z-6}{-3}\)
2 \(\frac{x-2}{4}=\frac{y-4}{3}=\frac{z-6}{3}\)
3 \(\frac{x-2}{4}=\frac{y-4}{3}=\frac{z-6}{-3}\)
4 \(\frac{x-2}{-4}=\frac{y-4}{-3}=\frac{z-6}{-3}\)
Three Dimensional Geometry

121252 The equation of the line passing through \((1,2,3)\) and perpendicular to the lines \(x-1=\frac{y+2}{2}=\frac{z+4}{4}\) and \(\frac{x-1}{2}=\frac{y-2}{2}=z+3\) is

1 \(\frac{x-1}{6}=\frac{y-2}{7}=\frac{z-3}{2}\)
2 \(\frac{x-1}{4}=\frac{2-y}{5}=\frac{z-3}{2}\)
3 \(x-1=\frac{y-2}{7}=\frac{z-3}{4}\)
4 \(\frac{x-1}{6}=\frac{2-y}{7}=\frac{z-3}{2}\)
Three Dimensional Geometry

121254 The parametric equations of the line passing through \(A(3,4,-7)\) and \(B(1,-1,6)\) are

1 \(x=3-2 \lambda\), \(\mathrm{y}=4-5 \lambda\), \(\mathrm{z}=-7+13 \lambda\)
2 \(x=1+3 \lambda\), \(\mathrm{y}=-1+4 \lambda\), \(\mathrm{z}=6-7 \lambda\)
3 \(x=-2+5 \lambda\), \(\mathrm{y}=-5+4 \lambda\), \(\mathrm{z}=13-7 \lambda\)
4 \(\mathrm{x}=3+\lambda\), \(\mathrm{y}=-1+4 \lambda\), \(z=-7+6 \lambda\)
Three Dimensional Geometry

121255 Points on the line \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\), which are at 7 unit distance from the origin are

1 \((0,0,7)\) and \((7,0,0)\)
2 \((2,3,6)\) and \((-2,-3,-6)\)
3 \((-7,0,0)\) and \((7,0,0)\)
4 \((-2,3,6)\) and \((2,-3,6)\)
Three Dimensional Geometry

121251 The equation of a line passing through the point \((2,4,6)\) and parallel to the line \(3 \mathrm{x}+4=4 \mathrm{y}-1=1-4 \mathrm{z}\) is

1 \(\frac{x-2}{-4}=\frac{y-4}{3}=\frac{z-6}{-3}\)
2 \(\frac{x-2}{4}=\frac{y-4}{3}=\frac{z-6}{3}\)
3 \(\frac{x-2}{4}=\frac{y-4}{3}=\frac{z-6}{-3}\)
4 \(\frac{x-2}{-4}=\frac{y-4}{-3}=\frac{z-6}{-3}\)
Three Dimensional Geometry

121252 The equation of the line passing through \((1,2,3)\) and perpendicular to the lines \(x-1=\frac{y+2}{2}=\frac{z+4}{4}\) and \(\frac{x-1}{2}=\frac{y-2}{2}=z+3\) is

1 \(\frac{x-1}{6}=\frac{y-2}{7}=\frac{z-3}{2}\)
2 \(\frac{x-1}{4}=\frac{2-y}{5}=\frac{z-3}{2}\)
3 \(x-1=\frac{y-2}{7}=\frac{z-3}{4}\)
4 \(\frac{x-1}{6}=\frac{2-y}{7}=\frac{z-3}{2}\)
Three Dimensional Geometry

121254 The parametric equations of the line passing through \(A(3,4,-7)\) and \(B(1,-1,6)\) are

1 \(x=3-2 \lambda\), \(\mathrm{y}=4-5 \lambda\), \(\mathrm{z}=-7+13 \lambda\)
2 \(x=1+3 \lambda\), \(\mathrm{y}=-1+4 \lambda\), \(\mathrm{z}=6-7 \lambda\)
3 \(x=-2+5 \lambda\), \(\mathrm{y}=-5+4 \lambda\), \(\mathrm{z}=13-7 \lambda\)
4 \(\mathrm{x}=3+\lambda\), \(\mathrm{y}=-1+4 \lambda\), \(z=-7+6 \lambda\)
Three Dimensional Geometry

121255 Points on the line \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\), which are at 7 unit distance from the origin are

1 \((0,0,7)\) and \((7,0,0)\)
2 \((2,3,6)\) and \((-2,-3,-6)\)
3 \((-7,0,0)\) and \((7,0,0)\)
4 \((-2,3,6)\) and \((2,-3,6)\)
Three Dimensional Geometry

121251 The equation of a line passing through the point \((2,4,6)\) and parallel to the line \(3 \mathrm{x}+4=4 \mathrm{y}-1=1-4 \mathrm{z}\) is

1 \(\frac{x-2}{-4}=\frac{y-4}{3}=\frac{z-6}{-3}\)
2 \(\frac{x-2}{4}=\frac{y-4}{3}=\frac{z-6}{3}\)
3 \(\frac{x-2}{4}=\frac{y-4}{3}=\frac{z-6}{-3}\)
4 \(\frac{x-2}{-4}=\frac{y-4}{-3}=\frac{z-6}{-3}\)
Three Dimensional Geometry

121252 The equation of the line passing through \((1,2,3)\) and perpendicular to the lines \(x-1=\frac{y+2}{2}=\frac{z+4}{4}\) and \(\frac{x-1}{2}=\frac{y-2}{2}=z+3\) is

1 \(\frac{x-1}{6}=\frac{y-2}{7}=\frac{z-3}{2}\)
2 \(\frac{x-1}{4}=\frac{2-y}{5}=\frac{z-3}{2}\)
3 \(x-1=\frac{y-2}{7}=\frac{z-3}{4}\)
4 \(\frac{x-1}{6}=\frac{2-y}{7}=\frac{z-3}{2}\)
Three Dimensional Geometry

121254 The parametric equations of the line passing through \(A(3,4,-7)\) and \(B(1,-1,6)\) are

1 \(x=3-2 \lambda\), \(\mathrm{y}=4-5 \lambda\), \(\mathrm{z}=-7+13 \lambda\)
2 \(x=1+3 \lambda\), \(\mathrm{y}=-1+4 \lambda\), \(\mathrm{z}=6-7 \lambda\)
3 \(x=-2+5 \lambda\), \(\mathrm{y}=-5+4 \lambda\), \(\mathrm{z}=13-7 \lambda\)
4 \(\mathrm{x}=3+\lambda\), \(\mathrm{y}=-1+4 \lambda\), \(z=-7+6 \lambda\)
Three Dimensional Geometry

121255 Points on the line \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\), which are at 7 unit distance from the origin are

1 \((0,0,7)\) and \((7,0,0)\)
2 \((2,3,6)\) and \((-2,-3,-6)\)
3 \((-7,0,0)\) and \((7,0,0)\)
4 \((-2,3,6)\) and \((2,-3,6)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121251 The equation of a line passing through the point \((2,4,6)\) and parallel to the line \(3 \mathrm{x}+4=4 \mathrm{y}-1=1-4 \mathrm{z}\) is

1 \(\frac{x-2}{-4}=\frac{y-4}{3}=\frac{z-6}{-3}\)
2 \(\frac{x-2}{4}=\frac{y-4}{3}=\frac{z-6}{3}\)
3 \(\frac{x-2}{4}=\frac{y-4}{3}=\frac{z-6}{-3}\)
4 \(\frac{x-2}{-4}=\frac{y-4}{-3}=\frac{z-6}{-3}\)
Three Dimensional Geometry

121252 The equation of the line passing through \((1,2,3)\) and perpendicular to the lines \(x-1=\frac{y+2}{2}=\frac{z+4}{4}\) and \(\frac{x-1}{2}=\frac{y-2}{2}=z+3\) is

1 \(\frac{x-1}{6}=\frac{y-2}{7}=\frac{z-3}{2}\)
2 \(\frac{x-1}{4}=\frac{2-y}{5}=\frac{z-3}{2}\)
3 \(x-1=\frac{y-2}{7}=\frac{z-3}{4}\)
4 \(\frac{x-1}{6}=\frac{2-y}{7}=\frac{z-3}{2}\)
Three Dimensional Geometry

121254 The parametric equations of the line passing through \(A(3,4,-7)\) and \(B(1,-1,6)\) are

1 \(x=3-2 \lambda\), \(\mathrm{y}=4-5 \lambda\), \(\mathrm{z}=-7+13 \lambda\)
2 \(x=1+3 \lambda\), \(\mathrm{y}=-1+4 \lambda\), \(\mathrm{z}=6-7 \lambda\)
3 \(x=-2+5 \lambda\), \(\mathrm{y}=-5+4 \lambda\), \(\mathrm{z}=13-7 \lambda\)
4 \(\mathrm{x}=3+\lambda\), \(\mathrm{y}=-1+4 \lambda\), \(z=-7+6 \lambda\)
Three Dimensional Geometry

121255 Points on the line \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\), which are at 7 unit distance from the origin are

1 \((0,0,7)\) and \((7,0,0)\)
2 \((2,3,6)\) and \((-2,-3,-6)\)
3 \((-7,0,0)\) and \((7,0,0)\)
4 \((-2,3,6)\) and \((2,-3,6)\)