Equation of a Line, Sphere, and a Plane in Different Forms
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121262 The lines \(\quad \frac{x-1}{2}=\frac{y+1}{2}=\frac{z-1}{4}\) \(\frac{x-3}{1}=\frac{y-6}{2}=\frac{z}{1}\) intersect each other at point

1 \((-2,-4,5)\)
2 \((-2,-4,-5)\)
3 \((2,4,-5)\)
4 \((2,-4,-5)\)
Three Dimensional Geometry

121263 The equation of line is \(\frac{x-1}{2}=\frac{y+1}{-2}=\frac{z+1}{1}\) A point on the line at a distance of 3 units from the point \((1,-1,-1)\) is

1 \((7,-7,2)\)
2 \((3,-3,0)\)
3 \((6,7,-2)\)
4 \((-3,3,0)\)
Three Dimensional Geometry

121264 If a plane meets the coordinate axes at \(A, B\) and \(C\) in such a way that the centroid of triangle \(\mathrm{ABC}\) is at the point \((1,2,3)\) then the equation of the plane is

1 \(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
2 \(\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1\)
3 \(\frac{\mathrm{x}}{1}+\frac{\mathrm{y}}{2}+\frac{\mathrm{z}}{3}=\frac{1}{3}\)
4 \(\frac{x}{1}-\frac{y}{2}+\frac{z}{3}=-1\)
Three Dimensional Geometry

121265 A plane which is passing through the point (3, \(2,0)\) and the line \(\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}\) is

1 \(x-y+z=1\)
2 \(x+y+z=1\)
3 \(x-y+2 z=0\)
4 \(x+y+2 z=0\)
Three Dimensional Geometry

121262 The lines \(\quad \frac{x-1}{2}=\frac{y+1}{2}=\frac{z-1}{4}\) \(\frac{x-3}{1}=\frac{y-6}{2}=\frac{z}{1}\) intersect each other at point

1 \((-2,-4,5)\)
2 \((-2,-4,-5)\)
3 \((2,4,-5)\)
4 \((2,-4,-5)\)
Three Dimensional Geometry

121263 The equation of line is \(\frac{x-1}{2}=\frac{y+1}{-2}=\frac{z+1}{1}\) A point on the line at a distance of 3 units from the point \((1,-1,-1)\) is

1 \((7,-7,2)\)
2 \((3,-3,0)\)
3 \((6,7,-2)\)
4 \((-3,3,0)\)
Three Dimensional Geometry

121264 If a plane meets the coordinate axes at \(A, B\) and \(C\) in such a way that the centroid of triangle \(\mathrm{ABC}\) is at the point \((1,2,3)\) then the equation of the plane is

1 \(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
2 \(\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1\)
3 \(\frac{\mathrm{x}}{1}+\frac{\mathrm{y}}{2}+\frac{\mathrm{z}}{3}=\frac{1}{3}\)
4 \(\frac{x}{1}-\frac{y}{2}+\frac{z}{3}=-1\)
Three Dimensional Geometry

121265 A plane which is passing through the point (3, \(2,0)\) and the line \(\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}\) is

1 \(x-y+z=1\)
2 \(x+y+z=1\)
3 \(x-y+2 z=0\)
4 \(x+y+2 z=0\)
Three Dimensional Geometry

121262 The lines \(\quad \frac{x-1}{2}=\frac{y+1}{2}=\frac{z-1}{4}\) \(\frac{x-3}{1}=\frac{y-6}{2}=\frac{z}{1}\) intersect each other at point

1 \((-2,-4,5)\)
2 \((-2,-4,-5)\)
3 \((2,4,-5)\)
4 \((2,-4,-5)\)
Three Dimensional Geometry

121263 The equation of line is \(\frac{x-1}{2}=\frac{y+1}{-2}=\frac{z+1}{1}\) A point on the line at a distance of 3 units from the point \((1,-1,-1)\) is

1 \((7,-7,2)\)
2 \((3,-3,0)\)
3 \((6,7,-2)\)
4 \((-3,3,0)\)
Three Dimensional Geometry

121264 If a plane meets the coordinate axes at \(A, B\) and \(C\) in such a way that the centroid of triangle \(\mathrm{ABC}\) is at the point \((1,2,3)\) then the equation of the plane is

1 \(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
2 \(\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1\)
3 \(\frac{\mathrm{x}}{1}+\frac{\mathrm{y}}{2}+\frac{\mathrm{z}}{3}=\frac{1}{3}\)
4 \(\frac{x}{1}-\frac{y}{2}+\frac{z}{3}=-1\)
Three Dimensional Geometry

121265 A plane which is passing through the point (3, \(2,0)\) and the line \(\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}\) is

1 \(x-y+z=1\)
2 \(x+y+z=1\)
3 \(x-y+2 z=0\)
4 \(x+y+2 z=0\)
Three Dimensional Geometry

121262 The lines \(\quad \frac{x-1}{2}=\frac{y+1}{2}=\frac{z-1}{4}\) \(\frac{x-3}{1}=\frac{y-6}{2}=\frac{z}{1}\) intersect each other at point

1 \((-2,-4,5)\)
2 \((-2,-4,-5)\)
3 \((2,4,-5)\)
4 \((2,-4,-5)\)
Three Dimensional Geometry

121263 The equation of line is \(\frac{x-1}{2}=\frac{y+1}{-2}=\frac{z+1}{1}\) A point on the line at a distance of 3 units from the point \((1,-1,-1)\) is

1 \((7,-7,2)\)
2 \((3,-3,0)\)
3 \((6,7,-2)\)
4 \((-3,3,0)\)
Three Dimensional Geometry

121264 If a plane meets the coordinate axes at \(A, B\) and \(C\) in such a way that the centroid of triangle \(\mathrm{ABC}\) is at the point \((1,2,3)\) then the equation of the plane is

1 \(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
2 \(\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1\)
3 \(\frac{\mathrm{x}}{1}+\frac{\mathrm{y}}{2}+\frac{\mathrm{z}}{3}=\frac{1}{3}\)
4 \(\frac{x}{1}-\frac{y}{2}+\frac{z}{3}=-1\)
Three Dimensional Geometry

121265 A plane which is passing through the point (3, \(2,0)\) and the line \(\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}\) is

1 \(x-y+z=1\)
2 \(x+y+z=1\)
3 \(x-y+2 z=0\)
4 \(x+y+2 z=0\)