Explanation:
A Given,
\(l_1: \frac{\mathrm{x}+7}{-6}=\frac{\mathrm{y}-6}{7}=\frac{\mathrm{z}-0}{1}\)
And, \(l_2: \frac{\mathrm{x}-7}{-2}=\frac{\mathrm{y}-2}{1}=\frac{\mathrm{z}-6}{1}\)
\(\left(\mathrm{x}_1, \mathrm{y}_1, \mathrm{z}_1\right)=(-7,6,0)\)
\(\left(\mathrm{a}_1, \mathrm{~b}_1, \mathrm{c}_1\right)=(-6,7,1)\)
And, \(\left(\mathrm{x}_2, \mathrm{y}_2, \mathrm{z}_2\right)=(7,2,6)\)
\(\left(\mathrm{a}_2, \mathrm{~b}_2, \mathrm{c}_2\right)=(-2,1,1)\)
Shortest distance between two lines
\(\begin{aligned} & \mathrm{d}=\frac{\left|\begin{array}{ccc}\mathrm{x}_2-\mathrm{x}_1 & \mathrm{y}_2-y_1 & \mathrm{z}_2-z_1 \\ \mathrm{a}_1 & \mathrm{~b}_1 & c_1 \\ \mathrm{a}_2 & \mathrm{~b}_2 & \mathrm{c}_2\end{array}\right|}{\sqrt{\left(\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1\right)^2+\left(\mathrm{b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1\right)^2+\left(\mathrm{c}_1 \mathrm{a}_2-\mathrm{c}_2 \mathrm{a}_1\right)^2}} \\ & \mathrm{~d}=\frac{\left|\begin{array}{ccc}14 & -4 & 6 \\ -6 & 7 & 1 \\ -2 & 1 & 1\end{array}\right|}{\sqrt{(-6+14)^2+(7-1)^2+(-2+6)^2}}\end{aligned}\)
\(\Rightarrow d=\left|\frac{14(7-1)+4(-6+2)+6(-6+14)}{\sqrt{64+36+16}}\right|\)
\(\Rightarrow d=\frac{116}{\sqrt{116}}=\sqrt{116}\)Hence, \(\mathrm{d}=2 \sqrt{29}\)