Explanation:
B Given lines
\(\frac{x+2}{1}=\frac{y}{-2}=\frac{z-5}{2} \& \frac{x-4}{1}=\frac{y-1}{2}=\frac{z+3}{0}\)
Formula for shortest distance
S.D. \(=\frac{\left|\begin{array}{ccc}\mathrm{x}_2-\mathrm{x}_1 & \mathrm{y}_2-\mathrm{y}_1 & \mathrm{z}_2-\mathrm{z}_1 \\ \mathrm{a}_1 & \mathrm{~b}_1 & \mathrm{c}_1 \\ \mathrm{a}_2 & \mathrm{~b}_2 & \mathrm{c}_2\end{array}\right|}{\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ \mathrm{a}_1 & \mathrm{~b}_1 & \mathrm{c}_1 \\ \mathrm{a}_2 & \mathrm{~b}_2 & \mathrm{c}_2\end{array}\right|}\)
\(\begin{aligned} & \left(x_1, y_1, z_1\right)=(-2,0,5) \\ & \left(a_1, b_1, c_1\right)=(1,-2,2)\end{aligned}\)
And, \(\left(\mathrm{x}_2, \mathrm{y}_2, \mathrm{z}_2\right)=(4,1,-3)\)
\(\left(\mathrm{a}_2, \mathrm{~b}_2, \mathrm{c}_2\right)=(1,2,0)\)
\(=\frac{\left|\begin{array}{ccc}6 & 1 & -8 \\ 1 & -2 & 2 \\ 1 & 2 & 0\end{array}\right|}{\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 1 & 2 & 0\end{array}\right|}\)
\(=\left|\frac{6(-4)-1(-2)-8(2+2)}{|\hat{\mathrm{i}}(-4)-\hat{\mathrm{j}}(-2)+\hat{\mathrm{k}}(2+2)|}\right|\)
\(\left.=\left|\frac{-54}{\mid-4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}}\right||=| \frac{-54}{\sqrt{16+4+16}} \right\rvert\,\)Hence, S.D. \(=\frac{54}{6}=9\)