121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is
121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is
121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is
121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is
121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is