Skew Lines and Coplanar Lines
Three Dimensional Geometry

121231 Let the line \(\frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}\) and \(\frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}\) be coplanar and \(P\) be the plane containing these two lines. Then which of the following points does NOT lies on P ?

1 \((0,-2,-2)\)
2 \((-5,0,-1)\)
3 \((3,-1,0)\)
4 \((0,4,5)\)
Three Dimensional Geometry

121232 The shortest distance between the lines \(\frac{x+7}{-6}=\frac{y-6}{7}=z\) and \(\frac{7-x}{2}=y-2=z-6\) is

1 \(2 \sqrt{29}\)
2 1
3 \(\sqrt{\frac{37}{29}}\)
4 \(\sqrt{\frac{29}{2}}\)
Three Dimensional Geometry

121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is

1 1
2 0
3 -1
4 2
Three Dimensional Geometry

121238 The value of ' \(x\) ' for which the points \((1,2,1)\). \((0,1,3),(1,0,1)\) and \((2,0, x)\) are coplanar is

1 \(x=0\)
2 \(x=1\)
3 \(x=-1\)
4 \(x=2\)
Three Dimensional Geometry

121212 Lines \(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-K}\) and \(\frac{x-1}{K}=\frac{y-4}{2}=\) \(\frac{\mathrm{z}-5}{1}\) are coplanar if

1 \(\mathrm{K}=2\)
2 \(\mathrm{K}=0\)
3 \(\mathrm{K}=3\)
4 \(\mathrm{K}=-1\)
Three Dimensional Geometry

121231 Let the line \(\frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}\) and \(\frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}\) be coplanar and \(P\) be the plane containing these two lines. Then which of the following points does NOT lies on P ?

1 \((0,-2,-2)\)
2 \((-5,0,-1)\)
3 \((3,-1,0)\)
4 \((0,4,5)\)
Three Dimensional Geometry

121232 The shortest distance between the lines \(\frac{x+7}{-6}=\frac{y-6}{7}=z\) and \(\frac{7-x}{2}=y-2=z-6\) is

1 \(2 \sqrt{29}\)
2 1
3 \(\sqrt{\frac{37}{29}}\)
4 \(\sqrt{\frac{29}{2}}\)
Three Dimensional Geometry

121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is

1 1
2 0
3 -1
4 2
Three Dimensional Geometry

121238 The value of ' \(x\) ' for which the points \((1,2,1)\). \((0,1,3),(1,0,1)\) and \((2,0, x)\) are coplanar is

1 \(x=0\)
2 \(x=1\)
3 \(x=-1\)
4 \(x=2\)
Three Dimensional Geometry

121212 Lines \(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-K}\) and \(\frac{x-1}{K}=\frac{y-4}{2}=\) \(\frac{\mathrm{z}-5}{1}\) are coplanar if

1 \(\mathrm{K}=2\)
2 \(\mathrm{K}=0\)
3 \(\mathrm{K}=3\)
4 \(\mathrm{K}=-1\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121231 Let the line \(\frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}\) and \(\frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}\) be coplanar and \(P\) be the plane containing these two lines. Then which of the following points does NOT lies on P ?

1 \((0,-2,-2)\)
2 \((-5,0,-1)\)
3 \((3,-1,0)\)
4 \((0,4,5)\)
Three Dimensional Geometry

121232 The shortest distance between the lines \(\frac{x+7}{-6}=\frac{y-6}{7}=z\) and \(\frac{7-x}{2}=y-2=z-6\) is

1 \(2 \sqrt{29}\)
2 1
3 \(\sqrt{\frac{37}{29}}\)
4 \(\sqrt{\frac{29}{2}}\)
Three Dimensional Geometry

121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is

1 1
2 0
3 -1
4 2
Three Dimensional Geometry

121238 The value of ' \(x\) ' for which the points \((1,2,1)\). \((0,1,3),(1,0,1)\) and \((2,0, x)\) are coplanar is

1 \(x=0\)
2 \(x=1\)
3 \(x=-1\)
4 \(x=2\)
Three Dimensional Geometry

121212 Lines \(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-K}\) and \(\frac{x-1}{K}=\frac{y-4}{2}=\) \(\frac{\mathrm{z}-5}{1}\) are coplanar if

1 \(\mathrm{K}=2\)
2 \(\mathrm{K}=0\)
3 \(\mathrm{K}=3\)
4 \(\mathrm{K}=-1\)
Three Dimensional Geometry

121231 Let the line \(\frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}\) and \(\frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}\) be coplanar and \(P\) be the plane containing these two lines. Then which of the following points does NOT lies on P ?

1 \((0,-2,-2)\)
2 \((-5,0,-1)\)
3 \((3,-1,0)\)
4 \((0,4,5)\)
Three Dimensional Geometry

121232 The shortest distance between the lines \(\frac{x+7}{-6}=\frac{y-6}{7}=z\) and \(\frac{7-x}{2}=y-2=z-6\) is

1 \(2 \sqrt{29}\)
2 1
3 \(\sqrt{\frac{37}{29}}\)
4 \(\sqrt{\frac{29}{2}}\)
Three Dimensional Geometry

121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is

1 1
2 0
3 -1
4 2
Three Dimensional Geometry

121238 The value of ' \(x\) ' for which the points \((1,2,1)\). \((0,1,3),(1,0,1)\) and \((2,0, x)\) are coplanar is

1 \(x=0\)
2 \(x=1\)
3 \(x=-1\)
4 \(x=2\)
Three Dimensional Geometry

121212 Lines \(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-K}\) and \(\frac{x-1}{K}=\frac{y-4}{2}=\) \(\frac{\mathrm{z}-5}{1}\) are coplanar if

1 \(\mathrm{K}=2\)
2 \(\mathrm{K}=0\)
3 \(\mathrm{K}=3\)
4 \(\mathrm{K}=-1\)
Three Dimensional Geometry

121231 Let the line \(\frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}\) and \(\frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}\) be coplanar and \(P\) be the plane containing these two lines. Then which of the following points does NOT lies on P ?

1 \((0,-2,-2)\)
2 \((-5,0,-1)\)
3 \((3,-1,0)\)
4 \((0,4,5)\)
Three Dimensional Geometry

121232 The shortest distance between the lines \(\frac{x+7}{-6}=\frac{y-6}{7}=z\) and \(\frac{7-x}{2}=y-2=z-6\) is

1 \(2 \sqrt{29}\)
2 1
3 \(\sqrt{\frac{37}{29}}\)
4 \(\sqrt{\frac{29}{2}}\)
Three Dimensional Geometry

121236 If the vectors \(\alpha=\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{a}^2 \hat{\mathbf{k}}, \boldsymbol{\beta}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\mathbf{b}^2 \hat{\mathbf{k}}\) and \(\gamma=\hat{\mathbf{i}}+\mathbf{c} \hat{\mathbf{j}}+\mathbf{c}^2 \hat{\mathbf{k}}\) are three non- coplanar vectors and \(\left|\begin{array}{lll}a & a^2& 1+a^3 \\ b& b^2 &1+b^3 \\ c &c^2 &1+c^2\end{array}\right|=0\), then the value of abc is

1 1
2 0
3 -1
4 2
Three Dimensional Geometry

121238 The value of ' \(x\) ' for which the points \((1,2,1)\). \((0,1,3),(1,0,1)\) and \((2,0, x)\) are coplanar is

1 \(x=0\)
2 \(x=1\)
3 \(x=-1\)
4 \(x=2\)
Three Dimensional Geometry

121212 Lines \(\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-K}\) and \(\frac{x-1}{K}=\frac{y-4}{2}=\) \(\frac{\mathrm{z}-5}{1}\) are coplanar if

1 \(\mathrm{K}=2\)
2 \(\mathrm{K}=0\)
3 \(\mathrm{K}=3\)
4 \(\mathrm{K}=-1\)