Family of Circle
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

120061 The radical centre of the system of circles,
\(x^2+y^2+4 x+7=0,\)
\(2\left(x^2+y^2\right)+3 x+5 y+9=0\)
and \(x^2+y^2+y=0\) is

1 \((-2,-1)\)
2 \((1,-2)\)
3 \((-1,-2)\)
4 None of these
Conic Section

120062 If the lengths of the tangents drawn from a point \(P\) to the three circles
\(\mathrm{x}^2+\mathrm{y}^2-\mathbf{4}=\mathbf{0}\),
\(x^2+y^2-2 x+3 y=0\) and
\(x^2+y^2+7 y-18=0\) are equal, then the coordinates of \(P\) are

1 \((2,5)\)
2 \((3,4)\)
3 \((4,3)\)
4 \((5,2)\)
Conic Section

120063 The centre of the circle passing through the points of intersection of the circles \((x+3)^2+(y\) \(+2)^2=25\) and \((x-2)^2+(y-3)^2=25\) and cutting the circle \((x+1)^2+(y-2)^2=16\) orthogonally is

1 \(\left(\frac{-27}{2}, \frac{-25}{2}\right)\)
2 \((0,0)\)
3 \(\left(\frac{16}{3}, \frac{-25}{4}\right)\)
4 \(\left(\frac{4}{7}, \frac{3}{7}\right)\)
Conic Section

120064 If the radical axis of the circles
\(x^2+y^2+2 \alpha x+2 \beta y+c=0\) and
\(x^2+y^2+\frac{3}{2} x+4 y+c=0\) touches the circle \(\mathrm{x}^2+\mathrm{y}^2+2 \mathrm{x}+2 \mathrm{y}+\mathbf{1}=\mathbf{0}\), then
\(4 \alpha \beta-8 \alpha-3 \beta+10=\)

1 2
2 -2
3 4
4 -4
Conic Section

120061 The radical centre of the system of circles,
\(x^2+y^2+4 x+7=0,\)
\(2\left(x^2+y^2\right)+3 x+5 y+9=0\)
and \(x^2+y^2+y=0\) is

1 \((-2,-1)\)
2 \((1,-2)\)
3 \((-1,-2)\)
4 None of these
Conic Section

120062 If the lengths of the tangents drawn from a point \(P\) to the three circles
\(\mathrm{x}^2+\mathrm{y}^2-\mathbf{4}=\mathbf{0}\),
\(x^2+y^2-2 x+3 y=0\) and
\(x^2+y^2+7 y-18=0\) are equal, then the coordinates of \(P\) are

1 \((2,5)\)
2 \((3,4)\)
3 \((4,3)\)
4 \((5,2)\)
Conic Section

120063 The centre of the circle passing through the points of intersection of the circles \((x+3)^2+(y\) \(+2)^2=25\) and \((x-2)^2+(y-3)^2=25\) and cutting the circle \((x+1)^2+(y-2)^2=16\) orthogonally is

1 \(\left(\frac{-27}{2}, \frac{-25}{2}\right)\)
2 \((0,0)\)
3 \(\left(\frac{16}{3}, \frac{-25}{4}\right)\)
4 \(\left(\frac{4}{7}, \frac{3}{7}\right)\)
Conic Section

120064 If the radical axis of the circles
\(x^2+y^2+2 \alpha x+2 \beta y+c=0\) and
\(x^2+y^2+\frac{3}{2} x+4 y+c=0\) touches the circle \(\mathrm{x}^2+\mathrm{y}^2+2 \mathrm{x}+2 \mathrm{y}+\mathbf{1}=\mathbf{0}\), then
\(4 \alpha \beta-8 \alpha-3 \beta+10=\)

1 2
2 -2
3 4
4 -4
Conic Section

120061 The radical centre of the system of circles,
\(x^2+y^2+4 x+7=0,\)
\(2\left(x^2+y^2\right)+3 x+5 y+9=0\)
and \(x^2+y^2+y=0\) is

1 \((-2,-1)\)
2 \((1,-2)\)
3 \((-1,-2)\)
4 None of these
Conic Section

120062 If the lengths of the tangents drawn from a point \(P\) to the three circles
\(\mathrm{x}^2+\mathrm{y}^2-\mathbf{4}=\mathbf{0}\),
\(x^2+y^2-2 x+3 y=0\) and
\(x^2+y^2+7 y-18=0\) are equal, then the coordinates of \(P\) are

1 \((2,5)\)
2 \((3,4)\)
3 \((4,3)\)
4 \((5,2)\)
Conic Section

120063 The centre of the circle passing through the points of intersection of the circles \((x+3)^2+(y\) \(+2)^2=25\) and \((x-2)^2+(y-3)^2=25\) and cutting the circle \((x+1)^2+(y-2)^2=16\) orthogonally is

1 \(\left(\frac{-27}{2}, \frac{-25}{2}\right)\)
2 \((0,0)\)
3 \(\left(\frac{16}{3}, \frac{-25}{4}\right)\)
4 \(\left(\frac{4}{7}, \frac{3}{7}\right)\)
Conic Section

120064 If the radical axis of the circles
\(x^2+y^2+2 \alpha x+2 \beta y+c=0\) and
\(x^2+y^2+\frac{3}{2} x+4 y+c=0\) touches the circle \(\mathrm{x}^2+\mathrm{y}^2+2 \mathrm{x}+2 \mathrm{y}+\mathbf{1}=\mathbf{0}\), then
\(4 \alpha \beta-8 \alpha-3 \beta+10=\)

1 2
2 -2
3 4
4 -4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

120061 The radical centre of the system of circles,
\(x^2+y^2+4 x+7=0,\)
\(2\left(x^2+y^2\right)+3 x+5 y+9=0\)
and \(x^2+y^2+y=0\) is

1 \((-2,-1)\)
2 \((1,-2)\)
3 \((-1,-2)\)
4 None of these
Conic Section

120062 If the lengths of the tangents drawn from a point \(P\) to the three circles
\(\mathrm{x}^2+\mathrm{y}^2-\mathbf{4}=\mathbf{0}\),
\(x^2+y^2-2 x+3 y=0\) and
\(x^2+y^2+7 y-18=0\) are equal, then the coordinates of \(P\) are

1 \((2,5)\)
2 \((3,4)\)
3 \((4,3)\)
4 \((5,2)\)
Conic Section

120063 The centre of the circle passing through the points of intersection of the circles \((x+3)^2+(y\) \(+2)^2=25\) and \((x-2)^2+(y-3)^2=25\) and cutting the circle \((x+1)^2+(y-2)^2=16\) orthogonally is

1 \(\left(\frac{-27}{2}, \frac{-25}{2}\right)\)
2 \((0,0)\)
3 \(\left(\frac{16}{3}, \frac{-25}{4}\right)\)
4 \(\left(\frac{4}{7}, \frac{3}{7}\right)\)
Conic Section

120064 If the radical axis of the circles
\(x^2+y^2+2 \alpha x+2 \beta y+c=0\) and
\(x^2+y^2+\frac{3}{2} x+4 y+c=0\) touches the circle \(\mathrm{x}^2+\mathrm{y}^2+2 \mathrm{x}+2 \mathrm{y}+\mathbf{1}=\mathbf{0}\), then
\(4 \alpha \beta-8 \alpha-3 \beta+10=\)

1 2
2 -2
3 4
4 -4