Family of Circle
Conic Section

120065 The radius of the circle which cuts all the three circles
\(\text { circles }\)
\(x^2+y^2+4 x-4 y+3=0 x^2+y^2-4 x-4 y+3=0,\)
\(x^2+y^2+4 x+4 y+3=0\) orthogonally is

1 1
2 \(\sqrt{3}\)
3 \(\sqrt{5}\)
4 \(\sqrt{7}\)
Conic Section

120066 Equation of a common tangent to the circle \(x^2+\) \(y^2=4\) and to the ellipse \(2 x^2+25 y^2=50\) is

1 \(\sqrt{2} x+\sqrt{21} y+\sqrt{23}=0\)
2 \(\sqrt{2} \mathrm{x}-\sqrt{21} \mathrm{y}+2 \sqrt{23}=0\)
3 \(\sqrt{19} \mathrm{x}-\sqrt{2} \mathrm{y}+2 \sqrt{21}=0\)
4 \(\sqrt{19} \mathrm{x}-\mathrm{y}+2 \sqrt{20}=0\)
Conic Section

120056 The equation \(x^2+y^2+4 x+6 y+13=0\) represents

1 a pair of coincident lines
2 a pair of concurrent straight lines
3 a parabola
4 a point circle
Conic Section

120065 The radius of the circle which cuts all the three circles
\(\text { circles }\)
\(x^2+y^2+4 x-4 y+3=0 x^2+y^2-4 x-4 y+3=0,\)
\(x^2+y^2+4 x+4 y+3=0\) orthogonally is

1 1
2 \(\sqrt{3}\)
3 \(\sqrt{5}\)
4 \(\sqrt{7}\)
Conic Section

120066 Equation of a common tangent to the circle \(x^2+\) \(y^2=4\) and to the ellipse \(2 x^2+25 y^2=50\) is

1 \(\sqrt{2} x+\sqrt{21} y+\sqrt{23}=0\)
2 \(\sqrt{2} \mathrm{x}-\sqrt{21} \mathrm{y}+2 \sqrt{23}=0\)
3 \(\sqrt{19} \mathrm{x}-\sqrt{2} \mathrm{y}+2 \sqrt{21}=0\)
4 \(\sqrt{19} \mathrm{x}-\mathrm{y}+2 \sqrt{20}=0\)
Conic Section

120056 The equation \(x^2+y^2+4 x+6 y+13=0\) represents

1 a pair of coincident lines
2 a pair of concurrent straight lines
3 a parabola
4 a point circle
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

120065 The radius of the circle which cuts all the three circles
\(\text { circles }\)
\(x^2+y^2+4 x-4 y+3=0 x^2+y^2-4 x-4 y+3=0,\)
\(x^2+y^2+4 x+4 y+3=0\) orthogonally is

1 1
2 \(\sqrt{3}\)
3 \(\sqrt{5}\)
4 \(\sqrt{7}\)
Conic Section

120066 Equation of a common tangent to the circle \(x^2+\) \(y^2=4\) and to the ellipse \(2 x^2+25 y^2=50\) is

1 \(\sqrt{2} x+\sqrt{21} y+\sqrt{23}=0\)
2 \(\sqrt{2} \mathrm{x}-\sqrt{21} \mathrm{y}+2 \sqrt{23}=0\)
3 \(\sqrt{19} \mathrm{x}-\sqrt{2} \mathrm{y}+2 \sqrt{21}=0\)
4 \(\sqrt{19} \mathrm{x}-\mathrm{y}+2 \sqrt{20}=0\)
Conic Section

120056 The equation \(x^2+y^2+4 x+6 y+13=0\) represents

1 a pair of coincident lines
2 a pair of concurrent straight lines
3 a parabola
4 a point circle