120058
For the four circles \(M, N, O\) and \(P\), following four equations are given
Circle \(M: x^2+y^2=1\)
Circle \(N: x^2+y^2-2 x=0\)
Circle \(O: x^2+y^2-2 x-2 y+1=0\)
Circle \(P: x^2+y^2-2 y=0\)
If the centre of circle \(M\) is joined with centre of the circle \(N\), further centre of circle \(N\) is joined with centre of circle \(O\), centre of circle \(O\) is joined with the centre of circle \(P\) and lastly, centre of circle \(M\), then these lines from the sides of a
120059
\(\text { Let } A=\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid\)
\(\left.2 x^2+2 y^2-2 x-2 y=1\right\} \text {, }\)
\(\mathbf{B}=\{\mathbf{x}, \mathbf{y}) \in \mathbf{R} \times \mathbf{R} \mid\)
\(\left.4 x^2+4 y^2-16 y+7=0\right\}\)
\(\mathbf{C}=\{(\mathbf{x}, \mathbf{y}) \in \mathbf{R} \times \mathbf{R}\)
\(\left.x^2+y^2-4 x-2 y+5 \leq r^2\right\}\) Then the minimum value of \(|r|\) such that \(A \cup B \subseteq C\) is equal to
120060
Let \(Z\) be the set of all integers,
\(A=\left\{(x, y) \in Z \times Z:(x-2)^2+y^2 \leq 4\right\}\)
\(B=\left\{(x, y) \in Z \times Z: x^2+y^2 \leq 4\right\} \text { and }\)
\(C=\left\{(x, y) \in Z \times Z:(x-2)^2+(y-2)^2 \leq 4\right\}\)
If the total number of relation from \(A \cap B\) to \(A\) \(\cap C\) is \(2^p\), then the value of \(p\) is
120058
For the four circles \(M, N, O\) and \(P\), following four equations are given
Circle \(M: x^2+y^2=1\)
Circle \(N: x^2+y^2-2 x=0\)
Circle \(O: x^2+y^2-2 x-2 y+1=0\)
Circle \(P: x^2+y^2-2 y=0\)
If the centre of circle \(M\) is joined with centre of the circle \(N\), further centre of circle \(N\) is joined with centre of circle \(O\), centre of circle \(O\) is joined with the centre of circle \(P\) and lastly, centre of circle \(M\), then these lines from the sides of a
120059
\(\text { Let } A=\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid\)
\(\left.2 x^2+2 y^2-2 x-2 y=1\right\} \text {, }\)
\(\mathbf{B}=\{\mathbf{x}, \mathbf{y}) \in \mathbf{R} \times \mathbf{R} \mid\)
\(\left.4 x^2+4 y^2-16 y+7=0\right\}\)
\(\mathbf{C}=\{(\mathbf{x}, \mathbf{y}) \in \mathbf{R} \times \mathbf{R}\)
\(\left.x^2+y^2-4 x-2 y+5 \leq r^2\right\}\) Then the minimum value of \(|r|\) such that \(A \cup B \subseteq C\) is equal to
120060
Let \(Z\) be the set of all integers,
\(A=\left\{(x, y) \in Z \times Z:(x-2)^2+y^2 \leq 4\right\}\)
\(B=\left\{(x, y) \in Z \times Z: x^2+y^2 \leq 4\right\} \text { and }\)
\(C=\left\{(x, y) \in Z \times Z:(x-2)^2+(y-2)^2 \leq 4\right\}\)
If the total number of relation from \(A \cap B\) to \(A\) \(\cap C\) is \(2^p\), then the value of \(p\) is
120058
For the four circles \(M, N, O\) and \(P\), following four equations are given
Circle \(M: x^2+y^2=1\)
Circle \(N: x^2+y^2-2 x=0\)
Circle \(O: x^2+y^2-2 x-2 y+1=0\)
Circle \(P: x^2+y^2-2 y=0\)
If the centre of circle \(M\) is joined with centre of the circle \(N\), further centre of circle \(N\) is joined with centre of circle \(O\), centre of circle \(O\) is joined with the centre of circle \(P\) and lastly, centre of circle \(M\), then these lines from the sides of a
120059
\(\text { Let } A=\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid\)
\(\left.2 x^2+2 y^2-2 x-2 y=1\right\} \text {, }\)
\(\mathbf{B}=\{\mathbf{x}, \mathbf{y}) \in \mathbf{R} \times \mathbf{R} \mid\)
\(\left.4 x^2+4 y^2-16 y+7=0\right\}\)
\(\mathbf{C}=\{(\mathbf{x}, \mathbf{y}) \in \mathbf{R} \times \mathbf{R}\)
\(\left.x^2+y^2-4 x-2 y+5 \leq r^2\right\}\) Then the minimum value of \(|r|\) such that \(A \cup B \subseteq C\) is equal to
120060
Let \(Z\) be the set of all integers,
\(A=\left\{(x, y) \in Z \times Z:(x-2)^2+y^2 \leq 4\right\}\)
\(B=\left\{(x, y) \in Z \times Z: x^2+y^2 \leq 4\right\} \text { and }\)
\(C=\left\{(x, y) \in Z \times Z:(x-2)^2+(y-2)^2 \leq 4\right\}\)
If the total number of relation from \(A \cap B\) to \(A\) \(\cap C\) is \(2^p\), then the value of \(p\) is
120058
For the four circles \(M, N, O\) and \(P\), following four equations are given
Circle \(M: x^2+y^2=1\)
Circle \(N: x^2+y^2-2 x=0\)
Circle \(O: x^2+y^2-2 x-2 y+1=0\)
Circle \(P: x^2+y^2-2 y=0\)
If the centre of circle \(M\) is joined with centre of the circle \(N\), further centre of circle \(N\) is joined with centre of circle \(O\), centre of circle \(O\) is joined with the centre of circle \(P\) and lastly, centre of circle \(M\), then these lines from the sides of a
120059
\(\text { Let } A=\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid\)
\(\left.2 x^2+2 y^2-2 x-2 y=1\right\} \text {, }\)
\(\mathbf{B}=\{\mathbf{x}, \mathbf{y}) \in \mathbf{R} \times \mathbf{R} \mid\)
\(\left.4 x^2+4 y^2-16 y+7=0\right\}\)
\(\mathbf{C}=\{(\mathbf{x}, \mathbf{y}) \in \mathbf{R} \times \mathbf{R}\)
\(\left.x^2+y^2-4 x-2 y+5 \leq r^2\right\}\) Then the minimum value of \(|r|\) such that \(A \cup B \subseteq C\) is equal to
120060
Let \(Z\) be the set of all integers,
\(A=\left\{(x, y) \in Z \times Z:(x-2)^2+y^2 \leq 4\right\}\)
\(B=\left\{(x, y) \in Z \times Z: x^2+y^2 \leq 4\right\} \text { and }\)
\(C=\left\{(x, y) \in Z \times Z:(x-2)^2+(y-2)^2 \leq 4\right\}\)
If the total number of relation from \(A \cap B\) to \(A\) \(\cap C\) is \(2^p\), then the value of \(p\) is