Different Cases of Two Circles
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119994 The length of the common chord of the circles \(x^2+y^2+3 x+5 y+4=0\) and \(x^2+y^2+5 x+3 y+4\) \(=0\) is \(\qquad\) units.

1 3
2 2
3 6
4 4
Conic Section

119995 Find the equation of the circle which passes through the point \((1,2)\) and the points of intersection of the circles \(x^2+y^2-8 x-6 y+21=\) 0 and \(x^2+y^2-2 x-15=0\)

1 \(x^2+y^2-18 x-12 y+27=0\)
2 \(2\left(x^2+y^2\right)-18 x-12 y+27=0\)
3 \(3\left(x^2+y^2\right)-18 x-12 y+27=0\)
4 \(4\left(x^2+y^2\right)-18 x-12 y+27=0\)
Conic Section

119996 The perpendicular distance from the point \((1,2)\) to common chord of the circles \(x^2+y^2-2 x\) \(+4 y-4=0\) and \(x^2+y^2+4 x-6 y-3=0\) is \(\qquad\) units.

1 \(\frac{13}{\sqrt{123}}\)
2 \(\frac{13}{\sqrt{136}}\)
3 \(\frac{13}{\sqrt{63}}\)
4 \(\frac{13}{\sqrt{132}}\)
Conic Section

119997 The radical centre of the circles \(x^2+y^2+3 x+\) \(2 y+1=0, x^2+y^2-x+6 y+5=0\) and \(x^2+y^2+\) \(5 x-8 y+15=0\) is

1 \((3,2)\)
2 \((-3,-2)\)
3 \((2,3)\)
4 \((-2,-3)\)
Conic Section

119994 The length of the common chord of the circles \(x^2+y^2+3 x+5 y+4=0\) and \(x^2+y^2+5 x+3 y+4\) \(=0\) is \(\qquad\) units.

1 3
2 2
3 6
4 4
Conic Section

119995 Find the equation of the circle which passes through the point \((1,2)\) and the points of intersection of the circles \(x^2+y^2-8 x-6 y+21=\) 0 and \(x^2+y^2-2 x-15=0\)

1 \(x^2+y^2-18 x-12 y+27=0\)
2 \(2\left(x^2+y^2\right)-18 x-12 y+27=0\)
3 \(3\left(x^2+y^2\right)-18 x-12 y+27=0\)
4 \(4\left(x^2+y^2\right)-18 x-12 y+27=0\)
Conic Section

119996 The perpendicular distance from the point \((1,2)\) to common chord of the circles \(x^2+y^2-2 x\) \(+4 y-4=0\) and \(x^2+y^2+4 x-6 y-3=0\) is \(\qquad\) units.

1 \(\frac{13}{\sqrt{123}}\)
2 \(\frac{13}{\sqrt{136}}\)
3 \(\frac{13}{\sqrt{63}}\)
4 \(\frac{13}{\sqrt{132}}\)
Conic Section

119997 The radical centre of the circles \(x^2+y^2+3 x+\) \(2 y+1=0, x^2+y^2-x+6 y+5=0\) and \(x^2+y^2+\) \(5 x-8 y+15=0\) is

1 \((3,2)\)
2 \((-3,-2)\)
3 \((2,3)\)
4 \((-2,-3)\)
Conic Section

119994 The length of the common chord of the circles \(x^2+y^2+3 x+5 y+4=0\) and \(x^2+y^2+5 x+3 y+4\) \(=0\) is \(\qquad\) units.

1 3
2 2
3 6
4 4
Conic Section

119995 Find the equation of the circle which passes through the point \((1,2)\) and the points of intersection of the circles \(x^2+y^2-8 x-6 y+21=\) 0 and \(x^2+y^2-2 x-15=0\)

1 \(x^2+y^2-18 x-12 y+27=0\)
2 \(2\left(x^2+y^2\right)-18 x-12 y+27=0\)
3 \(3\left(x^2+y^2\right)-18 x-12 y+27=0\)
4 \(4\left(x^2+y^2\right)-18 x-12 y+27=0\)
Conic Section

119996 The perpendicular distance from the point \((1,2)\) to common chord of the circles \(x^2+y^2-2 x\) \(+4 y-4=0\) and \(x^2+y^2+4 x-6 y-3=0\) is \(\qquad\) units.

1 \(\frac{13}{\sqrt{123}}\)
2 \(\frac{13}{\sqrt{136}}\)
3 \(\frac{13}{\sqrt{63}}\)
4 \(\frac{13}{\sqrt{132}}\)
Conic Section

119997 The radical centre of the circles \(x^2+y^2+3 x+\) \(2 y+1=0, x^2+y^2-x+6 y+5=0\) and \(x^2+y^2+\) \(5 x-8 y+15=0\) is

1 \((3,2)\)
2 \((-3,-2)\)
3 \((2,3)\)
4 \((-2,-3)\)
Conic Section

119994 The length of the common chord of the circles \(x^2+y^2+3 x+5 y+4=0\) and \(x^2+y^2+5 x+3 y+4\) \(=0\) is \(\qquad\) units.

1 3
2 2
3 6
4 4
Conic Section

119995 Find the equation of the circle which passes through the point \((1,2)\) and the points of intersection of the circles \(x^2+y^2-8 x-6 y+21=\) 0 and \(x^2+y^2-2 x-15=0\)

1 \(x^2+y^2-18 x-12 y+27=0\)
2 \(2\left(x^2+y^2\right)-18 x-12 y+27=0\)
3 \(3\left(x^2+y^2\right)-18 x-12 y+27=0\)
4 \(4\left(x^2+y^2\right)-18 x-12 y+27=0\)
Conic Section

119996 The perpendicular distance from the point \((1,2)\) to common chord of the circles \(x^2+y^2-2 x\) \(+4 y-4=0\) and \(x^2+y^2+4 x-6 y-3=0\) is \(\qquad\) units.

1 \(\frac{13}{\sqrt{123}}\)
2 \(\frac{13}{\sqrt{136}}\)
3 \(\frac{13}{\sqrt{63}}\)
4 \(\frac{13}{\sqrt{132}}\)
Conic Section

119997 The radical centre of the circles \(x^2+y^2+3 x+\) \(2 y+1=0, x^2+y^2-x+6 y+5=0\) and \(x^2+y^2+\) \(5 x-8 y+15=0\) is

1 \((3,2)\)
2 \((-3,-2)\)
3 \((2,3)\)
4 \((-2,-3)\)