Different Cases of Two Circles
Conic Section

119998 If the point of intersection of the pair of the transverse common tangents and that of the pair of direct common tangents drawn to the circles \(x^2+y^2-14 x+6 y+33=0\) and \(x^2+y^2+\) \(30 x-2 y+1=0\) are \(T\) and \(D\) respectively, then the centre of the circle having TD as diameter is

1 \(\left(\frac{39}{2}, \frac{-7}{4}\right)\)
2 \(\left(\frac{39}{4}, \frac{7}{2}\right)\)
3 \(\left(\frac{39}{4}, \frac{-7}{2}\right)\)
4 \(\left(\frac{39}{2}, \frac{-7}{2}\right)\)
Conic Section

119999 If the circles \(x^2+y^2+2 \lambda x+2=0\) and \(x^2+y^2+\) \(4 y+2=0\) touch each other, then \(\lambda=\)

1 \(\pm 1\)
2 \(\pm 2\)
3 \(\pm 3\)
4 \(\pm 4\)
Conic Section

120000 The point of concurrence of all conjugate lines of the line \(5 x+7 y-78=0\) with respect to the circle \(x^2+y^2+6 x+8 y-96=0\) is

1 \((-2,3)\)
2 \((3,-2)\)
3 \((3,2)\)
4 \((2,3)\)
Conic Section

120001 If the angle between the circles
\(x^2+y^2-2 x-4 y+c=0\) and
\(x^2+y^2-4 x-2 y+4=0\) is \(60^{\circ}\), then \(c\) is equal to

1 \(\frac{3 \pm \sqrt{5}}{2}\)
2 \(\frac{6 \pm \sqrt{5}}{2}\)
3 \(\frac{9 \pm \sqrt{5}}{2}\)
4 \(\frac{7 \pm \sqrt{5}}{2}\)
Conic Section

119998 If the point of intersection of the pair of the transverse common tangents and that of the pair of direct common tangents drawn to the circles \(x^2+y^2-14 x+6 y+33=0\) and \(x^2+y^2+\) \(30 x-2 y+1=0\) are \(T\) and \(D\) respectively, then the centre of the circle having TD as diameter is

1 \(\left(\frac{39}{2}, \frac{-7}{4}\right)\)
2 \(\left(\frac{39}{4}, \frac{7}{2}\right)\)
3 \(\left(\frac{39}{4}, \frac{-7}{2}\right)\)
4 \(\left(\frac{39}{2}, \frac{-7}{2}\right)\)
Conic Section

119999 If the circles \(x^2+y^2+2 \lambda x+2=0\) and \(x^2+y^2+\) \(4 y+2=0\) touch each other, then \(\lambda=\)

1 \(\pm 1\)
2 \(\pm 2\)
3 \(\pm 3\)
4 \(\pm 4\)
Conic Section

120000 The point of concurrence of all conjugate lines of the line \(5 x+7 y-78=0\) with respect to the circle \(x^2+y^2+6 x+8 y-96=0\) is

1 \((-2,3)\)
2 \((3,-2)\)
3 \((3,2)\)
4 \((2,3)\)
Conic Section

120001 If the angle between the circles
\(x^2+y^2-2 x-4 y+c=0\) and
\(x^2+y^2-4 x-2 y+4=0\) is \(60^{\circ}\), then \(c\) is equal to

1 \(\frac{3 \pm \sqrt{5}}{2}\)
2 \(\frac{6 \pm \sqrt{5}}{2}\)
3 \(\frac{9 \pm \sqrt{5}}{2}\)
4 \(\frac{7 \pm \sqrt{5}}{2}\)
Conic Section

119998 If the point of intersection of the pair of the transverse common tangents and that of the pair of direct common tangents drawn to the circles \(x^2+y^2-14 x+6 y+33=0\) and \(x^2+y^2+\) \(30 x-2 y+1=0\) are \(T\) and \(D\) respectively, then the centre of the circle having TD as diameter is

1 \(\left(\frac{39}{2}, \frac{-7}{4}\right)\)
2 \(\left(\frac{39}{4}, \frac{7}{2}\right)\)
3 \(\left(\frac{39}{4}, \frac{-7}{2}\right)\)
4 \(\left(\frac{39}{2}, \frac{-7}{2}\right)\)
Conic Section

119999 If the circles \(x^2+y^2+2 \lambda x+2=0\) and \(x^2+y^2+\) \(4 y+2=0\) touch each other, then \(\lambda=\)

1 \(\pm 1\)
2 \(\pm 2\)
3 \(\pm 3\)
4 \(\pm 4\)
Conic Section

120000 The point of concurrence of all conjugate lines of the line \(5 x+7 y-78=0\) with respect to the circle \(x^2+y^2+6 x+8 y-96=0\) is

1 \((-2,3)\)
2 \((3,-2)\)
3 \((3,2)\)
4 \((2,3)\)
Conic Section

120001 If the angle between the circles
\(x^2+y^2-2 x-4 y+c=0\) and
\(x^2+y^2-4 x-2 y+4=0\) is \(60^{\circ}\), then \(c\) is equal to

1 \(\frac{3 \pm \sqrt{5}}{2}\)
2 \(\frac{6 \pm \sqrt{5}}{2}\)
3 \(\frac{9 \pm \sqrt{5}}{2}\)
4 \(\frac{7 \pm \sqrt{5}}{2}\)
Conic Section

119998 If the point of intersection of the pair of the transverse common tangents and that of the pair of direct common tangents drawn to the circles \(x^2+y^2-14 x+6 y+33=0\) and \(x^2+y^2+\) \(30 x-2 y+1=0\) are \(T\) and \(D\) respectively, then the centre of the circle having TD as diameter is

1 \(\left(\frac{39}{2}, \frac{-7}{4}\right)\)
2 \(\left(\frac{39}{4}, \frac{7}{2}\right)\)
3 \(\left(\frac{39}{4}, \frac{-7}{2}\right)\)
4 \(\left(\frac{39}{2}, \frac{-7}{2}\right)\)
Conic Section

119999 If the circles \(x^2+y^2+2 \lambda x+2=0\) and \(x^2+y^2+\) \(4 y+2=0\) touch each other, then \(\lambda=\)

1 \(\pm 1\)
2 \(\pm 2\)
3 \(\pm 3\)
4 \(\pm 4\)
Conic Section

120000 The point of concurrence of all conjugate lines of the line \(5 x+7 y-78=0\) with respect to the circle \(x^2+y^2+6 x+8 y-96=0\) is

1 \((-2,3)\)
2 \((3,-2)\)
3 \((3,2)\)
4 \((2,3)\)
Conic Section

120001 If the angle between the circles
\(x^2+y^2-2 x-4 y+c=0\) and
\(x^2+y^2-4 x-2 y+4=0\) is \(60^{\circ}\), then \(c\) is equal to

1 \(\frac{3 \pm \sqrt{5}}{2}\)
2 \(\frac{6 \pm \sqrt{5}}{2}\)
3 \(\frac{9 \pm \sqrt{5}}{2}\)
4 \(\frac{7 \pm \sqrt{5}}{2}\)