119994 The length of the common chord of the circles x2+y2+3x+5y+4=0 and x2+y2+5x+3y+4 =0 is units.
D Given,C1:x2+y2+3x+5y+4=0C2:x2+y2+5x+3y+4=0On solving these two circles, we get -x=ySubstituting x=y in equation (i), we get -2x2+8x+4=0x2+4x+2=0(x+2)2=2x+2=±2,x1,2=−2±2x=y=y1,2=−2±2Length =(x1−x2)2+(y1−y2)2=2(x1−x2)=2[(−2+2)−(−2−2)]=4
119995 Find the equation of the circle which passes through the point (1,2) and the points of intersection of the circles x2+y2−8x−6y+21= 0 and x2+y2−2x−15=0
C x2+y2−8x−6y+21+λ(x2+y2−2x−15)=0(1)2+(2)2−8−12+21+λ((1)2+(2)2−2×1−15)=01+4−8−12+21+λ(1+4−2−15)=01+1+4+λ(3−15)=0−12λ=0λ=1/2Now,x2+y2−8x−6y+21+1/2(x2+y2−2x−15)=0 or 3(x2+y2)−18x−12y+27=0
119996 The perpendicular distance from the point (1,2) to common chord of the circles x2+y2−2x +4y−4=0 and x2+y2+4x−6y−3=0 is units.
B Given,Ans: bExp: (B)Given,S1≡x2+y2−2x+4y−4=0S2≡x2+y2+4x−6y−3=0S1−S2=0⇒x2+y2−2x+4y−4−x2−y2−4x+6y+3=0⇒−6+10y−1=0At, (1,2)d=|ax1+by1+ca2+b2|=|−6+20−136+100|=+13136
119997 The radical centre of the circles x2+y2+3x+ 2y+1=0,x2+y2−x+6y+5=0 and x2+y2+ 5x−8y+15=0 is
A Given,S1:x2+y2+3x+2y+1=0S2:x2+y2−x+6y+5=0S3:x2+y2+5x−8y+15=0Let, (x,y) be the radical centre, then S1−S2=0S2−S3=04x−4y−4=0 and −6x+14y−10=0x=y+1 and 3x−7y+5=03(y+1)−7y+5=03y+3−7y+5=0−4y+8=0∴y=2 and x=2+1=3Radical centre is (3,2).