Directions Cosine and Ratios of Vector
Vector Algebra

87866 If \(\vec{a}\) and \(\vec{b}\) are unit vectors then what is the angle between \(\vec{a}\) and \(\vec{b}\) for \(\sqrt{3} \vec{a}-\vec{b}\) to be unit vector?

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Vector Algebra

87867 Suppose \(\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7\), then the angle between \(\vec{a} \& \vec{b}\) is

1 \(\pi\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{4}\)
Vector Algebra

87868 A space vector makes the angles \(150^{\circ}\) and \(60^{\circ}\) with the positive direction of \(X\) and \(Y\) axes. The angle made by the vector with the positive direction of \(\mathrm{Z}\)-axis is

1 \(60^{\circ}\)
2 \(90^{\circ}\)
3 \(120^{\circ}\)
4 \(180^{\circ}\)
Vector Algebra

87869 If \(\mathbf{p}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{q}}=4 \hat{\mathbf{k}}-\hat{\mathbf{j}}\) and \(\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}+\hat{\mathbf{k}}\) then the and unit vector in the direction of \(3 \vec{p}+\vec{q}-2 \vec{r}\) is

1 \(\frac{1}{3}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)
2 \(\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})\)
3 \(\frac{1}{3}(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)
4 \(\hat{i}+2 \hat{j}+2 \hat{k}\)
Vector Algebra

87866 If \(\vec{a}\) and \(\vec{b}\) are unit vectors then what is the angle between \(\vec{a}\) and \(\vec{b}\) for \(\sqrt{3} \vec{a}-\vec{b}\) to be unit vector?

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Vector Algebra

87867 Suppose \(\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7\), then the angle between \(\vec{a} \& \vec{b}\) is

1 \(\pi\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{4}\)
Vector Algebra

87868 A space vector makes the angles \(150^{\circ}\) and \(60^{\circ}\) with the positive direction of \(X\) and \(Y\) axes. The angle made by the vector with the positive direction of \(\mathrm{Z}\)-axis is

1 \(60^{\circ}\)
2 \(90^{\circ}\)
3 \(120^{\circ}\)
4 \(180^{\circ}\)
Vector Algebra

87869 If \(\mathbf{p}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{q}}=4 \hat{\mathbf{k}}-\hat{\mathbf{j}}\) and \(\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}+\hat{\mathbf{k}}\) then the and unit vector in the direction of \(3 \vec{p}+\vec{q}-2 \vec{r}\) is

1 \(\frac{1}{3}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)
2 \(\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})\)
3 \(\frac{1}{3}(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)
4 \(\hat{i}+2 \hat{j}+2 \hat{k}\)
Vector Algebra

87866 If \(\vec{a}\) and \(\vec{b}\) are unit vectors then what is the angle between \(\vec{a}\) and \(\vec{b}\) for \(\sqrt{3} \vec{a}-\vec{b}\) to be unit vector?

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Vector Algebra

87867 Suppose \(\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7\), then the angle between \(\vec{a} \& \vec{b}\) is

1 \(\pi\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{4}\)
Vector Algebra

87868 A space vector makes the angles \(150^{\circ}\) and \(60^{\circ}\) with the positive direction of \(X\) and \(Y\) axes. The angle made by the vector with the positive direction of \(\mathrm{Z}\)-axis is

1 \(60^{\circ}\)
2 \(90^{\circ}\)
3 \(120^{\circ}\)
4 \(180^{\circ}\)
Vector Algebra

87869 If \(\mathbf{p}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{q}}=4 \hat{\mathbf{k}}-\hat{\mathbf{j}}\) and \(\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}+\hat{\mathbf{k}}\) then the and unit vector in the direction of \(3 \vec{p}+\vec{q}-2 \vec{r}\) is

1 \(\frac{1}{3}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)
2 \(\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})\)
3 \(\frac{1}{3}(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)
4 \(\hat{i}+2 \hat{j}+2 \hat{k}\)
Vector Algebra

87866 If \(\vec{a}\) and \(\vec{b}\) are unit vectors then what is the angle between \(\vec{a}\) and \(\vec{b}\) for \(\sqrt{3} \vec{a}-\vec{b}\) to be unit vector?

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Vector Algebra

87867 Suppose \(\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7\), then the angle between \(\vec{a} \& \vec{b}\) is

1 \(\pi\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{4}\)
Vector Algebra

87868 A space vector makes the angles \(150^{\circ}\) and \(60^{\circ}\) with the positive direction of \(X\) and \(Y\) axes. The angle made by the vector with the positive direction of \(\mathrm{Z}\)-axis is

1 \(60^{\circ}\)
2 \(90^{\circ}\)
3 \(120^{\circ}\)
4 \(180^{\circ}\)
Vector Algebra

87869 If \(\mathbf{p}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{q}}=4 \hat{\mathbf{k}}-\hat{\mathbf{j}}\) and \(\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}+\hat{\mathbf{k}}\) then the and unit vector in the direction of \(3 \vec{p}+\vec{q}-2 \vec{r}\) is

1 \(\frac{1}{3}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)
2 \(\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})\)
3 \(\frac{1}{3}(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})\)
4 \(\hat{i}+2 \hat{j}+2 \hat{k}\)