Directions Cosine and Ratios of Vector
Vector Algebra

87862 If \(|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|=144\) and \(|\vec{a}|=6\), then \(\quad|\vec{b}|\) is equal to

1 3
2 2
3 4
4 6
Vector Algebra

87863 If the angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{2 \pi}{3}\) and the projection of \(\vec{a}\) in the direction of \(\vec{b}\) is -2 , then \(|\overrightarrow{\mathbf{a}}|=\)

1 4
2 2
3 3
4 1
Vector Algebra

87864 If \(\cos \alpha, \cos \beta, \cos \gamma\) are the direction cosines of a vector \(\overrightarrow{\mathbf{a}}\), then \(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma\) is equal to

1 2
2 3
3 -1
4 0
Vector Algebra

87865 If \(2 \vec{a} \cdot \vec{b}-|\vec{a}| \cdot|\vec{b}|\) then the angle between \(\vec{a} \& \vec{b}\) is

1 \(30^{\circ}\)
2 \(0^{\circ}\)
3 \(90^{\circ}\)
4 \(60^{\circ}\)
Vector Algebra

87862 If \(|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|=144\) and \(|\vec{a}|=6\), then \(\quad|\vec{b}|\) is equal to

1 3
2 2
3 4
4 6
Vector Algebra

87863 If the angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{2 \pi}{3}\) and the projection of \(\vec{a}\) in the direction of \(\vec{b}\) is -2 , then \(|\overrightarrow{\mathbf{a}}|=\)

1 4
2 2
3 3
4 1
Vector Algebra

87864 If \(\cos \alpha, \cos \beta, \cos \gamma\) are the direction cosines of a vector \(\overrightarrow{\mathbf{a}}\), then \(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma\) is equal to

1 2
2 3
3 -1
4 0
Vector Algebra

87865 If \(2 \vec{a} \cdot \vec{b}-|\vec{a}| \cdot|\vec{b}|\) then the angle between \(\vec{a} \& \vec{b}\) is

1 \(30^{\circ}\)
2 \(0^{\circ}\)
3 \(90^{\circ}\)
4 \(60^{\circ}\)
Vector Algebra

87862 If \(|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|=144\) and \(|\vec{a}|=6\), then \(\quad|\vec{b}|\) is equal to

1 3
2 2
3 4
4 6
Vector Algebra

87863 If the angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{2 \pi}{3}\) and the projection of \(\vec{a}\) in the direction of \(\vec{b}\) is -2 , then \(|\overrightarrow{\mathbf{a}}|=\)

1 4
2 2
3 3
4 1
Vector Algebra

87864 If \(\cos \alpha, \cos \beta, \cos \gamma\) are the direction cosines of a vector \(\overrightarrow{\mathbf{a}}\), then \(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma\) is equal to

1 2
2 3
3 -1
4 0
Vector Algebra

87865 If \(2 \vec{a} \cdot \vec{b}-|\vec{a}| \cdot|\vec{b}|\) then the angle between \(\vec{a} \& \vec{b}\) is

1 \(30^{\circ}\)
2 \(0^{\circ}\)
3 \(90^{\circ}\)
4 \(60^{\circ}\)
Vector Algebra

87862 If \(|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|=144\) and \(|\vec{a}|=6\), then \(\quad|\vec{b}|\) is equal to

1 3
2 2
3 4
4 6
Vector Algebra

87863 If the angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{2 \pi}{3}\) and the projection of \(\vec{a}\) in the direction of \(\vec{b}\) is -2 , then \(|\overrightarrow{\mathbf{a}}|=\)

1 4
2 2
3 3
4 1
Vector Algebra

87864 If \(\cos \alpha, \cos \beta, \cos \gamma\) are the direction cosines of a vector \(\overrightarrow{\mathbf{a}}\), then \(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma\) is equal to

1 2
2 3
3 -1
4 0
Vector Algebra

87865 If \(2 \vec{a} \cdot \vec{b}-|\vec{a}| \cdot|\vec{b}|\) then the angle between \(\vec{a} \& \vec{b}\) is

1 \(30^{\circ}\)
2 \(0^{\circ}\)
3 \(90^{\circ}\)
4 \(60^{\circ}\)