87874 Let \(\vec{\alpha}=4 \hat{i}+3 \hat{j}+5 \hat{k}\) and \(\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}\). Let \(\vec{\beta}_1\) be parallel to \(\vec{\alpha}\) and \(\vec{\beta}_2\) be perpendicular to \(\vec{\alpha}\). If \(\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2\), then the value of \(\mathbf{5} \overrightarrow{\boldsymbol{\beta}}_2(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})\) is.
87877 a, b and \(c\) are three unit vectors such that no two of them are collinear. If \(\mathbf{b}=\mathbf{2}\{\mathbf{a} \times(\mathbf{b} \times \mathbf{c})\}\) and \(\alpha\) is the angle between \(a, c\) and \(\beta\) is the angle between \(a, b\) then \(\cos (\boldsymbol{\alpha}+\boldsymbol{\beta})=\)
87874 Let \(\vec{\alpha}=4 \hat{i}+3 \hat{j}+5 \hat{k}\) and \(\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}\). Let \(\vec{\beta}_1\) be parallel to \(\vec{\alpha}\) and \(\vec{\beta}_2\) be perpendicular to \(\vec{\alpha}\). If \(\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2\), then the value of \(\mathbf{5} \overrightarrow{\boldsymbol{\beta}}_2(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})\) is.
87877 a, b and \(c\) are three unit vectors such that no two of them are collinear. If \(\mathbf{b}=\mathbf{2}\{\mathbf{a} \times(\mathbf{b} \times \mathbf{c})\}\) and \(\alpha\) is the angle between \(a, c\) and \(\beta\) is the angle between \(a, b\) then \(\cos (\boldsymbol{\alpha}+\boldsymbol{\beta})=\)
87874 Let \(\vec{\alpha}=4 \hat{i}+3 \hat{j}+5 \hat{k}\) and \(\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}\). Let \(\vec{\beta}_1\) be parallel to \(\vec{\alpha}\) and \(\vec{\beta}_2\) be perpendicular to \(\vec{\alpha}\). If \(\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2\), then the value of \(\mathbf{5} \overrightarrow{\boldsymbol{\beta}}_2(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})\) is.
87877 a, b and \(c\) are three unit vectors such that no two of them are collinear. If \(\mathbf{b}=\mathbf{2}\{\mathbf{a} \times(\mathbf{b} \times \mathbf{c})\}\) and \(\alpha\) is the angle between \(a, c\) and \(\beta\) is the angle between \(a, b\) then \(\cos (\boldsymbol{\alpha}+\boldsymbol{\beta})=\)
87874 Let \(\vec{\alpha}=4 \hat{i}+3 \hat{j}+5 \hat{k}\) and \(\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}\). Let \(\vec{\beta}_1\) be parallel to \(\vec{\alpha}\) and \(\vec{\beta}_2\) be perpendicular to \(\vec{\alpha}\). If \(\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2\), then the value of \(\mathbf{5} \overrightarrow{\boldsymbol{\beta}}_2(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})\) is.
87877 a, b and \(c\) are three unit vectors such that no two of them are collinear. If \(\mathbf{b}=\mathbf{2}\{\mathbf{a} \times(\mathbf{b} \times \mathbf{c})\}\) and \(\alpha\) is the angle between \(a, c\) and \(\beta\) is the angle between \(a, b\) then \(\cos (\boldsymbol{\alpha}+\boldsymbol{\beta})=\)
87874 Let \(\vec{\alpha}=4 \hat{i}+3 \hat{j}+5 \hat{k}\) and \(\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}\). Let \(\vec{\beta}_1\) be parallel to \(\vec{\alpha}\) and \(\vec{\beta}_2\) be perpendicular to \(\vec{\alpha}\). If \(\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2\), then the value of \(\mathbf{5} \overrightarrow{\boldsymbol{\beta}}_2(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})\) is.
87877 a, b and \(c\) are three unit vectors such that no two of them are collinear. If \(\mathbf{b}=\mathbf{2}\{\mathbf{a} \times(\mathbf{b} \times \mathbf{c})\}\) and \(\alpha\) is the angle between \(a, c\) and \(\beta\) is the angle between \(a, b\) then \(\cos (\boldsymbol{\alpha}+\boldsymbol{\beta})=\)