87807 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}_1 \hat{\mathbf{i}}+\overrightarrow{\mathbf{b}}_2 \hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}\) be three vectors such that the projection vector of \(b\) on \(a\) is \(a\). If \(a+b\) is perpendicular to \(c\), then \(|\mathbf{b}|\) is equal to
87807 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}_1 \hat{\mathbf{i}}+\overrightarrow{\mathbf{b}}_2 \hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}\) be three vectors such that the projection vector of \(b\) on \(a\) is \(a\). If \(a+b\) is perpendicular to \(c\), then \(|\mathbf{b}|\) is equal to
87807 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}_1 \hat{\mathbf{i}}+\overrightarrow{\mathbf{b}}_2 \hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}\) be three vectors such that the projection vector of \(b\) on \(a\) is \(a\). If \(a+b\) is perpendicular to \(c\), then \(|\mathbf{b}|\) is equal to
87807 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}_1 \hat{\mathbf{i}}+\overrightarrow{\mathbf{b}}_2 \hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2} \hat{\mathbf{k}}\) be three vectors such that the projection vector of \(b\) on \(a\) is \(a\). If \(a+b\) is perpendicular to \(c\), then \(|\mathbf{b}|\) is equal to