87828 If a,b,c are unit vectors satisfying the relation a+b+3c=0, then the angle between a and b is
(C) : Given, a→+b→=−3c→On squaring above equation, we get-|a→|2+|b→|2+2|a→||b→|cosθ=3|c→|21+1+2(1)(1)cosθ=3(1)[∵|a→|=|b→|=|c→|=1]cosθ=12θ=π3
87810 If vectors a1=xi^−j^+k^ and a2=i^+yj^+zk^ are collinear, then a possible unit vector parallel to the vector xi^+yj^+zk^ is
(D) : Given that, a1=xi^−j^+k^And, a2=i^+yj^+zk^ are collinear,Then, x1=−1y=1z=λ (say)This gives x=λ,y=−1λ,z=1λThen, unit vector parallel to vector xi^+yj^+zk^ will be =((λ)i^−(1λ)j^+(1λ)k^)(λ)2+(−1λ)2+(1λ)2=(λ2i^−j^+k^)λλλ4+2=(λ2i^−j^+k^)λ4+2 Take, λ=1Then, xi^+y^+zk^=(i^−j^+k^)3
87811 The magnitude of the projection of the vector 2i^+3j^+k^ on the vector perpendicular to the plane containing the vectors i^+j^+k^ and i^+2j^+3k^ is
(D) : According to the question,The vector perpendicular to the given vector is,a→=|i^j^k^111123|a→=i^−2j^+k^ Projection of b→ on a→=|a→⋅b→||a→|=|(i^−2j^+k^)⋅(2i^+3j^+k^)|6=|2−6+1|6=36=32
87812 If a→=i^+j^+k^,b→=i^+j^+2k^ and c→=2i^+3j^−4k^ then the magnitude of the projection on c→ of a→ unit vector that is perpendicular to both a→ and b→ is
(C) : Given that,a→=i^+j^+k^b→=i^+j^+2k^c→=2i^+3j^−4k^Then,a→×b→=|i^j^k^111112|i^(2−1)−j^(2−1)+k^(1−1)=i^−j^So, unit vector perpendicular to both a→ and b→ is,=±(i^−j^)2Now, the magnitude of the projection of ±(i^−j^)2 on c→ is,=|±(i^−j^2)⋅(2i^+3j^−4k^)4+9+16|=|2−3229|=158