87811 The magnitude of the projection of the vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) on the vector perpendicular to the plane containing the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is
87812 If \(\overrightarrow{\mathbf{a}}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}\) then the magnitude of the projection on \(\overrightarrow{\mathbf{c}}\) of \(\vec{a}\) unit vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) is
87811 The magnitude of the projection of the vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) on the vector perpendicular to the plane containing the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is
87812 If \(\overrightarrow{\mathbf{a}}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}\) then the magnitude of the projection on \(\overrightarrow{\mathbf{c}}\) of \(\vec{a}\) unit vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) is
87811 The magnitude of the projection of the vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) on the vector perpendicular to the plane containing the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is
87812 If \(\overrightarrow{\mathbf{a}}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}\) then the magnitude of the projection on \(\overrightarrow{\mathbf{c}}\) of \(\vec{a}\) unit vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) is
87811 The magnitude of the projection of the vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) on the vector perpendicular to the plane containing the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is
87812 If \(\overrightarrow{\mathbf{a}}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}\) then the magnitude of the projection on \(\overrightarrow{\mathbf{c}}\) of \(\vec{a}\) unit vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) is