Addition and Projection of Vectors
Vector Algebra

87828 If \(a, b, c\) are unit vectors satisfying the relation \(a+b+\sqrt{3} c=0\), then the angle between \(a\) and \(b\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Vector Algebra

87810 If vectors \(a_1=x \hat{i}-\hat{j}+\hat{k}\) and \(a_2=\hat{i}+y \hat{j}+z \hat{k}\) are collinear, then a possible unit vector parallel to the vector \(x \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) is

1 \(\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})\)
2 \(\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{j}})\)
3 \(\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
4 \(\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
Vector Algebra

87811 The magnitude of the projection of the vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) on the vector perpendicular to the plane containing the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is

1 \(\frac{\sqrt{3}}{2}\)
2 \(\sqrt{6}\)
3 \(3 \sqrt{6}\)
4 \(\sqrt{\frac{3}{2}}\)
Vector Algebra

87812 If \(\overrightarrow{\mathbf{a}}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}\) then the magnitude of the projection on \(\overrightarrow{\mathbf{c}}\) of \(\vec{a}\) unit vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{1}{\sqrt{29} \sqrt{3}}\)
2 \(\frac{1}{\sqrt{6}}\)
3 \(\frac{1}{\sqrt{58}}\)
4 \(\frac{3}{\sqrt{29}}\)
Vector Algebra

87828 If \(a, b, c\) are unit vectors satisfying the relation \(a+b+\sqrt{3} c=0\), then the angle between \(a\) and \(b\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Vector Algebra

87810 If vectors \(a_1=x \hat{i}-\hat{j}+\hat{k}\) and \(a_2=\hat{i}+y \hat{j}+z \hat{k}\) are collinear, then a possible unit vector parallel to the vector \(x \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) is

1 \(\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})\)
2 \(\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{j}})\)
3 \(\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
4 \(\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
Vector Algebra

87811 The magnitude of the projection of the vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) on the vector perpendicular to the plane containing the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is

1 \(\frac{\sqrt{3}}{2}\)
2 \(\sqrt{6}\)
3 \(3 \sqrt{6}\)
4 \(\sqrt{\frac{3}{2}}\)
Vector Algebra

87812 If \(\overrightarrow{\mathbf{a}}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}\) then the magnitude of the projection on \(\overrightarrow{\mathbf{c}}\) of \(\vec{a}\) unit vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{1}{\sqrt{29} \sqrt{3}}\)
2 \(\frac{1}{\sqrt{6}}\)
3 \(\frac{1}{\sqrt{58}}\)
4 \(\frac{3}{\sqrt{29}}\)
Vector Algebra

87828 If \(a, b, c\) are unit vectors satisfying the relation \(a+b+\sqrt{3} c=0\), then the angle between \(a\) and \(b\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Vector Algebra

87810 If vectors \(a_1=x \hat{i}-\hat{j}+\hat{k}\) and \(a_2=\hat{i}+y \hat{j}+z \hat{k}\) are collinear, then a possible unit vector parallel to the vector \(x \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) is

1 \(\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})\)
2 \(\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{j}})\)
3 \(\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
4 \(\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
Vector Algebra

87811 The magnitude of the projection of the vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) on the vector perpendicular to the plane containing the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is

1 \(\frac{\sqrt{3}}{2}\)
2 \(\sqrt{6}\)
3 \(3 \sqrt{6}\)
4 \(\sqrt{\frac{3}{2}}\)
Vector Algebra

87812 If \(\overrightarrow{\mathbf{a}}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}\) then the magnitude of the projection on \(\overrightarrow{\mathbf{c}}\) of \(\vec{a}\) unit vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{1}{\sqrt{29} \sqrt{3}}\)
2 \(\frac{1}{\sqrt{6}}\)
3 \(\frac{1}{\sqrt{58}}\)
4 \(\frac{3}{\sqrt{29}}\)
Vector Algebra

87828 If \(a, b, c\) are unit vectors satisfying the relation \(a+b+\sqrt{3} c=0\), then the angle between \(a\) and \(b\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{2}\)
Vector Algebra

87810 If vectors \(a_1=x \hat{i}-\hat{j}+\hat{k}\) and \(a_2=\hat{i}+y \hat{j}+z \hat{k}\) are collinear, then a possible unit vector parallel to the vector \(x \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) is

1 \(\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})\)
2 \(\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{j}})\)
3 \(\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
4 \(\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
Vector Algebra

87811 The magnitude of the projection of the vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) on the vector perpendicular to the plane containing the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is

1 \(\frac{\sqrt{3}}{2}\)
2 \(\sqrt{6}\)
3 \(3 \sqrt{6}\)
4 \(\sqrt{\frac{3}{2}}\)
Vector Algebra

87812 If \(\overrightarrow{\mathbf{a}}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{c}=2 \hat{i}+3 \hat{j}-4 \hat{k}\) then the magnitude of the projection on \(\overrightarrow{\mathbf{c}}\) of \(\vec{a}\) unit vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{1}{\sqrt{29} \sqrt{3}}\)
2 \(\frac{1}{\sqrt{6}}\)
3 \(\frac{1}{\sqrt{58}}\)
4 \(\frac{3}{\sqrt{29}}\)