87804 Let \(a, b\) and \(c\) be three unit vectors such that \(a\) \(+\mathbf{b}+\mathbf{c}=\mathbf{0}\). If \(\boldsymbol{\lambda}=\mathbf{a} . \mathbf{b}+\mathbf{b} . \mathbf{c}+\mathbf{c} . \mathbf{a}\) and \(\mathbf{d}=\mathbf{a} \times \mathbf{b}\) \(+b \times c+c \times a\), then the ordered pair, \((\lambda, d)\) is equal to
87804 Let \(a, b\) and \(c\) be three unit vectors such that \(a\) \(+\mathbf{b}+\mathbf{c}=\mathbf{0}\). If \(\boldsymbol{\lambda}=\mathbf{a} . \mathbf{b}+\mathbf{b} . \mathbf{c}+\mathbf{c} . \mathbf{a}\) and \(\mathbf{d}=\mathbf{a} \times \mathbf{b}\) \(+b \times c+c \times a\), then the ordered pair, \((\lambda, d)\) is equal to
87804 Let \(a, b\) and \(c\) be three unit vectors such that \(a\) \(+\mathbf{b}+\mathbf{c}=\mathbf{0}\). If \(\boldsymbol{\lambda}=\mathbf{a} . \mathbf{b}+\mathbf{b} . \mathbf{c}+\mathbf{c} . \mathbf{a}\) and \(\mathbf{d}=\mathbf{a} \times \mathbf{b}\) \(+b \times c+c \times a\), then the ordered pair, \((\lambda, d)\) is equal to
87804 Let \(a, b\) and \(c\) be three unit vectors such that \(a\) \(+\mathbf{b}+\mathbf{c}=\mathbf{0}\). If \(\boldsymbol{\lambda}=\mathbf{a} . \mathbf{b}+\mathbf{b} . \mathbf{c}+\mathbf{c} . \mathbf{a}\) and \(\mathbf{d}=\mathbf{a} \times \mathbf{b}\) \(+b \times c+c \times a\), then the ordered pair, \((\lambda, d)\) is equal to