Addition and Projection of Vectors
Vector Algebra

87798 Let \(x \in R\) and \(\log _2 x>0\). Then the vectors \(\vec{A}=\) (2, \(\left.\log _2 x, s\right) . \vec{B}=\left(\log _2 x, s, \log _2 x\right)\) include an acute angle if

1 \(s>1\)
2 \(s>-1\)
3 \(s=-1\)
4 \(\mathrm{s}\lt-1\)
Vector Algebra

87799 Let ABCDEF be a regular hexagon with the vertices \(A, B, C, D, E, F\) counterclockwise. Then the vector \(\overrightarrow{A B}+\overrightarrow{B C}\) is equal/parallel to

1 \(\overline{\mathrm{BC}}+\overrightarrow{\mathrm{AB}}\)
2 \(\overline{\mathrm{CD}}+\overline{\mathrm{DE}}\)
3 \(\overline{\mathrm{AF}}+\overrightarrow{\mathrm{FE}}\)
4 \(\overrightarrow{\mathrm{FE}}+\overrightarrow{\mathrm{ED}}\)
Vector Algebra

87800 If \(\triangle O \mathrm{AC}\), if \(\mathrm{B}\) is the midpoint of side \(\mathrm{AC}\) and \(\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathbf{b}}\) then \(\overrightarrow{\mathrm{OC}}=\)

1 \(2 \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}\)
2 \(\vec{b}-2 \vec{a}\)
3 \(\vec{a}-2 \vec{b}\)
4 \(\vec{a}-\vec{b}\)
Vector Algebra

87801 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}\) be a vector such that \(\vec{a} \times \vec{c}+\vec{b}=0\) and \(\vec{a} . \vec{c}=4\), then \(|\vec{c}|^2\) is equal to

1 8
2 \(\frac{19}{2}\)
3 9
4 \(\frac{17}{2}\)
Vector Algebra

87802 Let \(\alpha \in R\) and three vectors \(\vec{a}=\alpha \hat{i}+\hat{j}+3 \hat{k}\), \(\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\alpha \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{c}}=\alpha \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\). Then, the set \(S=(\boldsymbol{\alpha}: \mathbf{a}, \mathbf{b}\) and \(\mathrm{c}\) are coplanar)

1 is singleton
2 is empty
3 contains exactly two positive numbers
4 contains exactly two numbers only one of which is positive.
Vector Algebra

87798 Let \(x \in R\) and \(\log _2 x>0\). Then the vectors \(\vec{A}=\) (2, \(\left.\log _2 x, s\right) . \vec{B}=\left(\log _2 x, s, \log _2 x\right)\) include an acute angle if

1 \(s>1\)
2 \(s>-1\)
3 \(s=-1\)
4 \(\mathrm{s}\lt-1\)
Vector Algebra

87799 Let ABCDEF be a regular hexagon with the vertices \(A, B, C, D, E, F\) counterclockwise. Then the vector \(\overrightarrow{A B}+\overrightarrow{B C}\) is equal/parallel to

1 \(\overline{\mathrm{BC}}+\overrightarrow{\mathrm{AB}}\)
2 \(\overline{\mathrm{CD}}+\overline{\mathrm{DE}}\)
3 \(\overline{\mathrm{AF}}+\overrightarrow{\mathrm{FE}}\)
4 \(\overrightarrow{\mathrm{FE}}+\overrightarrow{\mathrm{ED}}\)
Vector Algebra

87800 If \(\triangle O \mathrm{AC}\), if \(\mathrm{B}\) is the midpoint of side \(\mathrm{AC}\) and \(\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathbf{b}}\) then \(\overrightarrow{\mathrm{OC}}=\)

1 \(2 \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}\)
2 \(\vec{b}-2 \vec{a}\)
3 \(\vec{a}-2 \vec{b}\)
4 \(\vec{a}-\vec{b}\)
Vector Algebra

87801 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}\) be a vector such that \(\vec{a} \times \vec{c}+\vec{b}=0\) and \(\vec{a} . \vec{c}=4\), then \(|\vec{c}|^2\) is equal to

1 8
2 \(\frac{19}{2}\)
3 9
4 \(\frac{17}{2}\)
Vector Algebra

87802 Let \(\alpha \in R\) and three vectors \(\vec{a}=\alpha \hat{i}+\hat{j}+3 \hat{k}\), \(\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\alpha \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{c}}=\alpha \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\). Then, the set \(S=(\boldsymbol{\alpha}: \mathbf{a}, \mathbf{b}\) and \(\mathrm{c}\) are coplanar)

1 is singleton
2 is empty
3 contains exactly two positive numbers
4 contains exactly two numbers only one of which is positive.
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87798 Let \(x \in R\) and \(\log _2 x>0\). Then the vectors \(\vec{A}=\) (2, \(\left.\log _2 x, s\right) . \vec{B}=\left(\log _2 x, s, \log _2 x\right)\) include an acute angle if

1 \(s>1\)
2 \(s>-1\)
3 \(s=-1\)
4 \(\mathrm{s}\lt-1\)
Vector Algebra

87799 Let ABCDEF be a regular hexagon with the vertices \(A, B, C, D, E, F\) counterclockwise. Then the vector \(\overrightarrow{A B}+\overrightarrow{B C}\) is equal/parallel to

1 \(\overline{\mathrm{BC}}+\overrightarrow{\mathrm{AB}}\)
2 \(\overline{\mathrm{CD}}+\overline{\mathrm{DE}}\)
3 \(\overline{\mathrm{AF}}+\overrightarrow{\mathrm{FE}}\)
4 \(\overrightarrow{\mathrm{FE}}+\overrightarrow{\mathrm{ED}}\)
Vector Algebra

87800 If \(\triangle O \mathrm{AC}\), if \(\mathrm{B}\) is the midpoint of side \(\mathrm{AC}\) and \(\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathbf{b}}\) then \(\overrightarrow{\mathrm{OC}}=\)

1 \(2 \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}\)
2 \(\vec{b}-2 \vec{a}\)
3 \(\vec{a}-2 \vec{b}\)
4 \(\vec{a}-\vec{b}\)
Vector Algebra

87801 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}\) be a vector such that \(\vec{a} \times \vec{c}+\vec{b}=0\) and \(\vec{a} . \vec{c}=4\), then \(|\vec{c}|^2\) is equal to

1 8
2 \(\frac{19}{2}\)
3 9
4 \(\frac{17}{2}\)
Vector Algebra

87802 Let \(\alpha \in R\) and three vectors \(\vec{a}=\alpha \hat{i}+\hat{j}+3 \hat{k}\), \(\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\alpha \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{c}}=\alpha \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\). Then, the set \(S=(\boldsymbol{\alpha}: \mathbf{a}, \mathbf{b}\) and \(\mathrm{c}\) are coplanar)

1 is singleton
2 is empty
3 contains exactly two positive numbers
4 contains exactly two numbers only one of which is positive.
Vector Algebra

87798 Let \(x \in R\) and \(\log _2 x>0\). Then the vectors \(\vec{A}=\) (2, \(\left.\log _2 x, s\right) . \vec{B}=\left(\log _2 x, s, \log _2 x\right)\) include an acute angle if

1 \(s>1\)
2 \(s>-1\)
3 \(s=-1\)
4 \(\mathrm{s}\lt-1\)
Vector Algebra

87799 Let ABCDEF be a regular hexagon with the vertices \(A, B, C, D, E, F\) counterclockwise. Then the vector \(\overrightarrow{A B}+\overrightarrow{B C}\) is equal/parallel to

1 \(\overline{\mathrm{BC}}+\overrightarrow{\mathrm{AB}}\)
2 \(\overline{\mathrm{CD}}+\overline{\mathrm{DE}}\)
3 \(\overline{\mathrm{AF}}+\overrightarrow{\mathrm{FE}}\)
4 \(\overrightarrow{\mathrm{FE}}+\overrightarrow{\mathrm{ED}}\)
Vector Algebra

87800 If \(\triangle O \mathrm{AC}\), if \(\mathrm{B}\) is the midpoint of side \(\mathrm{AC}\) and \(\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathbf{b}}\) then \(\overrightarrow{\mathrm{OC}}=\)

1 \(2 \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}\)
2 \(\vec{b}-2 \vec{a}\)
3 \(\vec{a}-2 \vec{b}\)
4 \(\vec{a}-\vec{b}\)
Vector Algebra

87801 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}\) be a vector such that \(\vec{a} \times \vec{c}+\vec{b}=0\) and \(\vec{a} . \vec{c}=4\), then \(|\vec{c}|^2\) is equal to

1 8
2 \(\frac{19}{2}\)
3 9
4 \(\frac{17}{2}\)
Vector Algebra

87802 Let \(\alpha \in R\) and three vectors \(\vec{a}=\alpha \hat{i}+\hat{j}+3 \hat{k}\), \(\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\alpha \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{c}}=\alpha \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\). Then, the set \(S=(\boldsymbol{\alpha}: \mathbf{a}, \mathbf{b}\) and \(\mathrm{c}\) are coplanar)

1 is singleton
2 is empty
3 contains exactly two positive numbers
4 contains exactly two numbers only one of which is positive.
Vector Algebra

87798 Let \(x \in R\) and \(\log _2 x>0\). Then the vectors \(\vec{A}=\) (2, \(\left.\log _2 x, s\right) . \vec{B}=\left(\log _2 x, s, \log _2 x\right)\) include an acute angle if

1 \(s>1\)
2 \(s>-1\)
3 \(s=-1\)
4 \(\mathrm{s}\lt-1\)
Vector Algebra

87799 Let ABCDEF be a regular hexagon with the vertices \(A, B, C, D, E, F\) counterclockwise. Then the vector \(\overrightarrow{A B}+\overrightarrow{B C}\) is equal/parallel to

1 \(\overline{\mathrm{BC}}+\overrightarrow{\mathrm{AB}}\)
2 \(\overline{\mathrm{CD}}+\overline{\mathrm{DE}}\)
3 \(\overline{\mathrm{AF}}+\overrightarrow{\mathrm{FE}}\)
4 \(\overrightarrow{\mathrm{FE}}+\overrightarrow{\mathrm{ED}}\)
Vector Algebra

87800 If \(\triangle O \mathrm{AC}\), if \(\mathrm{B}\) is the midpoint of side \(\mathrm{AC}\) and \(\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathbf{b}}\) then \(\overrightarrow{\mathrm{OC}}=\)

1 \(2 \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}\)
2 \(\vec{b}-2 \vec{a}\)
3 \(\vec{a}-2 \vec{b}\)
4 \(\vec{a}-\vec{b}\)
Vector Algebra

87801 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}\) be a vector such that \(\vec{a} \times \vec{c}+\vec{b}=0\) and \(\vec{a} . \vec{c}=4\), then \(|\vec{c}|^2\) is equal to

1 8
2 \(\frac{19}{2}\)
3 9
4 \(\frac{17}{2}\)
Vector Algebra

87802 Let \(\alpha \in R\) and three vectors \(\vec{a}=\alpha \hat{i}+\hat{j}+3 \hat{k}\), \(\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\alpha \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{c}}=\alpha \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\). Then, the set \(S=(\boldsymbol{\alpha}: \mathbf{a}, \mathbf{b}\) and \(\mathrm{c}\) are coplanar)

1 is singleton
2 is empty
3 contains exactly two positive numbers
4 contains exactly two numbers only one of which is positive.