Addition and Projection of Vectors
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87794 If \(A B C D E F\) is a regular hexagon inscribed in a circle with center ' \(O\) ' then \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}\) equal

1 \(4 \overrightarrow{\mathrm{AO}}\)
2 \(5 \overrightarrow{\mathrm{AO}}\)
3 \(6 \overrightarrow{\mathrm{AO}}\)
4 \(8 \overrightarrow{\mathrm{AO}}\)
Vector Algebra

87795 If the projection of \(5 \hat{i}-\hat{j}-3 \hat{k}\) on the vector \(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}\) is same as the projection of \(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}\) on \(5 \hat{\mathbf{i}}-\hat{\mathbf{j}}-3 \hat{\mathbf{k}}\), then \(\lambda=\)

1 \(\pm 4\)
2 \(\pm 3\)
3 \(\pm 5\)
4 \(\pm 1\)
Vector Algebra

87796 If \(\vec{a}=(p,-2,5)\) and \(\vec{b}=(1, q,-3)\) are collinear vectors then

1 \(\mathrm{p}=\frac{5}{3}, \mathrm{q}=\frac{6}{5}\)
2 \(\mathrm{p}=\frac{-5}{3}, \mathrm{q}=\frac{-6}{5}\)
3 \(\mathrm{p}=\frac{5}{3}, \mathrm{q}=\frac{-6}{5}\)
4 \(\mathrm{p}=\frac{-5}{3}, \mathrm{q}=\frac{6}{5}\)
Vector Algebra

87797 If origin is the ortho-center of an equilateral triangle whose vertices are \(\vec{a}, \vec{b}, \vec{c}\) then

1 \(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}\)
2 \(\vec{a}+\vec{b}=-\vec{c}\)
3 \(|\vec{a}|^2=|\vec{b}|^2=|\vec{c}|^2\)
4 \(\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}\)
Vector Algebra

87794 If \(A B C D E F\) is a regular hexagon inscribed in a circle with center ' \(O\) ' then \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}\) equal

1 \(4 \overrightarrow{\mathrm{AO}}\)
2 \(5 \overrightarrow{\mathrm{AO}}\)
3 \(6 \overrightarrow{\mathrm{AO}}\)
4 \(8 \overrightarrow{\mathrm{AO}}\)
Vector Algebra

87795 If the projection of \(5 \hat{i}-\hat{j}-3 \hat{k}\) on the vector \(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}\) is same as the projection of \(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}\) on \(5 \hat{\mathbf{i}}-\hat{\mathbf{j}}-3 \hat{\mathbf{k}}\), then \(\lambda=\)

1 \(\pm 4\)
2 \(\pm 3\)
3 \(\pm 5\)
4 \(\pm 1\)
Vector Algebra

87796 If \(\vec{a}=(p,-2,5)\) and \(\vec{b}=(1, q,-3)\) are collinear vectors then

1 \(\mathrm{p}=\frac{5}{3}, \mathrm{q}=\frac{6}{5}\)
2 \(\mathrm{p}=\frac{-5}{3}, \mathrm{q}=\frac{-6}{5}\)
3 \(\mathrm{p}=\frac{5}{3}, \mathrm{q}=\frac{-6}{5}\)
4 \(\mathrm{p}=\frac{-5}{3}, \mathrm{q}=\frac{6}{5}\)
Vector Algebra

87797 If origin is the ortho-center of an equilateral triangle whose vertices are \(\vec{a}, \vec{b}, \vec{c}\) then

1 \(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}\)
2 \(\vec{a}+\vec{b}=-\vec{c}\)
3 \(|\vec{a}|^2=|\vec{b}|^2=|\vec{c}|^2\)
4 \(\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}\)
Vector Algebra

87794 If \(A B C D E F\) is a regular hexagon inscribed in a circle with center ' \(O\) ' then \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}\) equal

1 \(4 \overrightarrow{\mathrm{AO}}\)
2 \(5 \overrightarrow{\mathrm{AO}}\)
3 \(6 \overrightarrow{\mathrm{AO}}\)
4 \(8 \overrightarrow{\mathrm{AO}}\)
Vector Algebra

87795 If the projection of \(5 \hat{i}-\hat{j}-3 \hat{k}\) on the vector \(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}\) is same as the projection of \(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}\) on \(5 \hat{\mathbf{i}}-\hat{\mathbf{j}}-3 \hat{\mathbf{k}}\), then \(\lambda=\)

1 \(\pm 4\)
2 \(\pm 3\)
3 \(\pm 5\)
4 \(\pm 1\)
Vector Algebra

87796 If \(\vec{a}=(p,-2,5)\) and \(\vec{b}=(1, q,-3)\) are collinear vectors then

1 \(\mathrm{p}=\frac{5}{3}, \mathrm{q}=\frac{6}{5}\)
2 \(\mathrm{p}=\frac{-5}{3}, \mathrm{q}=\frac{-6}{5}\)
3 \(\mathrm{p}=\frac{5}{3}, \mathrm{q}=\frac{-6}{5}\)
4 \(\mathrm{p}=\frac{-5}{3}, \mathrm{q}=\frac{6}{5}\)
Vector Algebra

87797 If origin is the ortho-center of an equilateral triangle whose vertices are \(\vec{a}, \vec{b}, \vec{c}\) then

1 \(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}\)
2 \(\vec{a}+\vec{b}=-\vec{c}\)
3 \(|\vec{a}|^2=|\vec{b}|^2=|\vec{c}|^2\)
4 \(\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87794 If \(A B C D E F\) is a regular hexagon inscribed in a circle with center ' \(O\) ' then \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}\) equal

1 \(4 \overrightarrow{\mathrm{AO}}\)
2 \(5 \overrightarrow{\mathrm{AO}}\)
3 \(6 \overrightarrow{\mathrm{AO}}\)
4 \(8 \overrightarrow{\mathrm{AO}}\)
Vector Algebra

87795 If the projection of \(5 \hat{i}-\hat{j}-3 \hat{k}\) on the vector \(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}\) is same as the projection of \(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}\) on \(5 \hat{\mathbf{i}}-\hat{\mathbf{j}}-3 \hat{\mathbf{k}}\), then \(\lambda=\)

1 \(\pm 4\)
2 \(\pm 3\)
3 \(\pm 5\)
4 \(\pm 1\)
Vector Algebra

87796 If \(\vec{a}=(p,-2,5)\) and \(\vec{b}=(1, q,-3)\) are collinear vectors then

1 \(\mathrm{p}=\frac{5}{3}, \mathrm{q}=\frac{6}{5}\)
2 \(\mathrm{p}=\frac{-5}{3}, \mathrm{q}=\frac{-6}{5}\)
3 \(\mathrm{p}=\frac{5}{3}, \mathrm{q}=\frac{-6}{5}\)
4 \(\mathrm{p}=\frac{-5}{3}, \mathrm{q}=\frac{6}{5}\)
Vector Algebra

87797 If origin is the ortho-center of an equilateral triangle whose vertices are \(\vec{a}, \vec{b}, \vec{c}\) then

1 \(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}\)
2 \(\vec{a}+\vec{b}=-\vec{c}\)
3 \(|\vec{a}|^2=|\vec{b}|^2=|\vec{c}|^2\)
4 \(\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}\)