Addition and Projection of Vectors
Vector Algebra

87791 In quadrilateral \(\mathrm{ABCD}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathbf{b}}\). \(\overrightarrow{A D}=\vec{b}-\vec{a}\) if \(M\) is the midpoint of \(B C\) and \(N\) is \(\vec{a}\) point on DM such that \(\overrightarrow{\mathrm{DN}}=\left(\frac{4}{5}\right) \overrightarrow{\mathrm{DM}}\), then \(5 \overrightarrow{\mathrm{AN}}=\)

1 \(\overrightarrow{\mathrm{AC}}\)
2 \(2 \overrightarrow{\mathrm{AC}}\)
3 \(3 \overrightarrow{\mathrm{AC}}\)
4 \(4 \overrightarrow{\mathrm{AC}}\)
Vector Algebra

87820 If \(P Q R S T\) is a pentagon, then the resultant of forces, PQ, PT, QR, SR, TS and PS is

1 3 PT
2 3 PQ
3 \(3 \mathrm{PS}\)
4 0
Vector Algebra

87792 Let ABCDEF be a regular hexagon with the vertices \(A, B, C, D, E, F\) counter clock-wise. Then the vector \(\overrightarrow{\mathbf{A B}}+\overline{\mathbf{A F}}+\overline{\mathbf{C D}}+\overline{\mathbf{E F}}\) is equal to

1 \(\overrightarrow{\mathrm{DE}}+\)
2 \(\overline{\mathrm{CB}}+\overline{\mathrm{ED}}\)
3 \(\overline{\mathrm{BC}}+\overline{\mathrm{FA}}\)
4 \(\overline{\mathrm{BC}}+\overrightarrow{\mathrm{DE}}\)
Vector Algebra

87793 If the vectors
\(a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+c \hat{k}\) are
coplanar, where \((a, b, c \neq l)\), then the value of
\(\frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=\)

1 2
2 0
3 -1
4 1
Vector Algebra

87791 In quadrilateral \(\mathrm{ABCD}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathbf{b}}\). \(\overrightarrow{A D}=\vec{b}-\vec{a}\) if \(M\) is the midpoint of \(B C\) and \(N\) is \(\vec{a}\) point on DM such that \(\overrightarrow{\mathrm{DN}}=\left(\frac{4}{5}\right) \overrightarrow{\mathrm{DM}}\), then \(5 \overrightarrow{\mathrm{AN}}=\)

1 \(\overrightarrow{\mathrm{AC}}\)
2 \(2 \overrightarrow{\mathrm{AC}}\)
3 \(3 \overrightarrow{\mathrm{AC}}\)
4 \(4 \overrightarrow{\mathrm{AC}}\)
Vector Algebra

87820 If \(P Q R S T\) is a pentagon, then the resultant of forces, PQ, PT, QR, SR, TS and PS is

1 3 PT
2 3 PQ
3 \(3 \mathrm{PS}\)
4 0
Vector Algebra

87792 Let ABCDEF be a regular hexagon with the vertices \(A, B, C, D, E, F\) counter clock-wise. Then the vector \(\overrightarrow{\mathbf{A B}}+\overline{\mathbf{A F}}+\overline{\mathbf{C D}}+\overline{\mathbf{E F}}\) is equal to

1 \(\overrightarrow{\mathrm{DE}}+\)
2 \(\overline{\mathrm{CB}}+\overline{\mathrm{ED}}\)
3 \(\overline{\mathrm{BC}}+\overline{\mathrm{FA}}\)
4 \(\overline{\mathrm{BC}}+\overrightarrow{\mathrm{DE}}\)
Vector Algebra

87793 If the vectors
\(a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+c \hat{k}\) are
coplanar, where \((a, b, c \neq l)\), then the value of
\(\frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=\)

1 2
2 0
3 -1
4 1
Vector Algebra

87791 In quadrilateral \(\mathrm{ABCD}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathbf{b}}\). \(\overrightarrow{A D}=\vec{b}-\vec{a}\) if \(M\) is the midpoint of \(B C\) and \(N\) is \(\vec{a}\) point on DM such that \(\overrightarrow{\mathrm{DN}}=\left(\frac{4}{5}\right) \overrightarrow{\mathrm{DM}}\), then \(5 \overrightarrow{\mathrm{AN}}=\)

1 \(\overrightarrow{\mathrm{AC}}\)
2 \(2 \overrightarrow{\mathrm{AC}}\)
3 \(3 \overrightarrow{\mathrm{AC}}\)
4 \(4 \overrightarrow{\mathrm{AC}}\)
Vector Algebra

87820 If \(P Q R S T\) is a pentagon, then the resultant of forces, PQ, PT, QR, SR, TS and PS is

1 3 PT
2 3 PQ
3 \(3 \mathrm{PS}\)
4 0
Vector Algebra

87792 Let ABCDEF be a regular hexagon with the vertices \(A, B, C, D, E, F\) counter clock-wise. Then the vector \(\overrightarrow{\mathbf{A B}}+\overline{\mathbf{A F}}+\overline{\mathbf{C D}}+\overline{\mathbf{E F}}\) is equal to

1 \(\overrightarrow{\mathrm{DE}}+\)
2 \(\overline{\mathrm{CB}}+\overline{\mathrm{ED}}\)
3 \(\overline{\mathrm{BC}}+\overline{\mathrm{FA}}\)
4 \(\overline{\mathrm{BC}}+\overrightarrow{\mathrm{DE}}\)
Vector Algebra

87793 If the vectors
\(a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+c \hat{k}\) are
coplanar, where \((a, b, c \neq l)\), then the value of
\(\frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=\)

1 2
2 0
3 -1
4 1
Vector Algebra

87791 In quadrilateral \(\mathrm{ABCD}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathbf{b}}\). \(\overrightarrow{A D}=\vec{b}-\vec{a}\) if \(M\) is the midpoint of \(B C\) and \(N\) is \(\vec{a}\) point on DM such that \(\overrightarrow{\mathrm{DN}}=\left(\frac{4}{5}\right) \overrightarrow{\mathrm{DM}}\), then \(5 \overrightarrow{\mathrm{AN}}=\)

1 \(\overrightarrow{\mathrm{AC}}\)
2 \(2 \overrightarrow{\mathrm{AC}}\)
3 \(3 \overrightarrow{\mathrm{AC}}\)
4 \(4 \overrightarrow{\mathrm{AC}}\)
Vector Algebra

87820 If \(P Q R S T\) is a pentagon, then the resultant of forces, PQ, PT, QR, SR, TS and PS is

1 3 PT
2 3 PQ
3 \(3 \mathrm{PS}\)
4 0
Vector Algebra

87792 Let ABCDEF be a regular hexagon with the vertices \(A, B, C, D, E, F\) counter clock-wise. Then the vector \(\overrightarrow{\mathbf{A B}}+\overline{\mathbf{A F}}+\overline{\mathbf{C D}}+\overline{\mathbf{E F}}\) is equal to

1 \(\overrightarrow{\mathrm{DE}}+\)
2 \(\overline{\mathrm{CB}}+\overline{\mathrm{ED}}\)
3 \(\overline{\mathrm{BC}}+\overline{\mathrm{FA}}\)
4 \(\overline{\mathrm{BC}}+\overrightarrow{\mathrm{DE}}\)
Vector Algebra

87793 If the vectors
\(a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+c \hat{k}\) are
coplanar, where \((a, b, c \neq l)\), then the value of
\(\frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=\)

1 2
2 0
3 -1
4 1