Explanation:
(A) : Given,
\(\vec{A}=(2 \hat{i}-q \hat{j}+3 \hat{k})\)
\(\vec{B}=(4 \hat{i}-5 \hat{j}+6 \hat{k})\)
and both the vector \(\overrightarrow{\mathrm{A}}\) and \(\overrightarrow{\mathrm{B}}\) are collinear.
\(\therefore\) There exists a scalar \(t\) such that \(\vec{b}=t \vec{a}\)
\(4 \hat{i}-5 \hat{j}+6 \hat{k}=t(2 \hat{i}-q \hat{j}+3 \hat{k})\)
\(4 \hat{i}-5 \hat{j}+6 \hat{k}=2 t \hat{i}-q t \hat{j}+3 t \hat{k}\)
Now, by equality of vectors, we get-
\(4=2 \mathrm{t},-5=-\mathrm{qt}, 6=3 \mathrm{t}\)
\(\mathrm{t}=\frac{4}{2}=2\)
Now,
Put, \(\mathrm{t}=2\) in,
\(-5=-q t\)
\(-5=-q(2)\)
\(q=\frac{5}{2}\)