Addition and Projection of Vectors
Vector Algebra

87732 \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\mathbf{x} \hat{\mathbf{i}}+(x-1) \hat{\mathbf{j}}-\hat{\mathbf{k}}\). If the vector \(\vec{c}\) lies in the plane of \(\vec{a}\) and \(\vec{b}\), then \(x=\)

1 \(\frac{2}{3}\)
2 \(\frac{-3}{2}\)
3 \(\frac{-2}{3}\)
4 \(\frac{3}{2}\)
Vector Algebra

87733 If \(\overrightarrow{\mathbf{a}}=\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\mathbf{2} \hat{\mathbf{i}}-\hat{\mathbf{j}}+7 \hat{\mathbf{k}}\)
and \(\overrightarrow{\mathbf{c}}=7 \hat{\mathbf{i}}-\hat{\mathbf{j}}+23 \hat{\mathbf{k}}\) are three vectors then which of the following statement is true.

1 \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular
2 \(\vec{a}, \vec{b}\) and \(\vec{c}\) are coplanar
3 \(\vec{a}, \vec{b}\) and \(\vec{c}\) are non-coplanar
4 \(\vec{a}\) and \(\vec{b}\) are collinear
Vector Algebra

87734 The value of \(\mathrm{m}\), if the vectors \(\hat{\mathbf{i}}-\hat{\mathbf{j}}-6 \hat{\mathbf{k}}, \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+\mathrm{m} \hat{\mathbf{k}}\) are coplanar, is

1 1
2 3
3 -1
4 -3
Vector Algebra

87742 A unit vector perpendicular to both the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\hat{\mathbf{j}}+\hat{\mathbf{k}}\) is

1 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\)
2 \(\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\)
3 \(\frac{-\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}\)
4 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{3}\)
Vector Algebra

87732 \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\mathbf{x} \hat{\mathbf{i}}+(x-1) \hat{\mathbf{j}}-\hat{\mathbf{k}}\). If the vector \(\vec{c}\) lies in the plane of \(\vec{a}\) and \(\vec{b}\), then \(x=\)

1 \(\frac{2}{3}\)
2 \(\frac{-3}{2}\)
3 \(\frac{-2}{3}\)
4 \(\frac{3}{2}\)
Vector Algebra

87733 If \(\overrightarrow{\mathbf{a}}=\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\mathbf{2} \hat{\mathbf{i}}-\hat{\mathbf{j}}+7 \hat{\mathbf{k}}\)
and \(\overrightarrow{\mathbf{c}}=7 \hat{\mathbf{i}}-\hat{\mathbf{j}}+23 \hat{\mathbf{k}}\) are three vectors then which of the following statement is true.

1 \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular
2 \(\vec{a}, \vec{b}\) and \(\vec{c}\) are coplanar
3 \(\vec{a}, \vec{b}\) and \(\vec{c}\) are non-coplanar
4 \(\vec{a}\) and \(\vec{b}\) are collinear
Vector Algebra

87734 The value of \(\mathrm{m}\), if the vectors \(\hat{\mathbf{i}}-\hat{\mathbf{j}}-6 \hat{\mathbf{k}}, \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+\mathrm{m} \hat{\mathbf{k}}\) are coplanar, is

1 1
2 3
3 -1
4 -3
Vector Algebra

87742 A unit vector perpendicular to both the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\hat{\mathbf{j}}+\hat{\mathbf{k}}\) is

1 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\)
2 \(\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\)
3 \(\frac{-\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}\)
4 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{3}\)
Vector Algebra

87732 \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\mathbf{x} \hat{\mathbf{i}}+(x-1) \hat{\mathbf{j}}-\hat{\mathbf{k}}\). If the vector \(\vec{c}\) lies in the plane of \(\vec{a}\) and \(\vec{b}\), then \(x=\)

1 \(\frac{2}{3}\)
2 \(\frac{-3}{2}\)
3 \(\frac{-2}{3}\)
4 \(\frac{3}{2}\)
Vector Algebra

87733 If \(\overrightarrow{\mathbf{a}}=\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\mathbf{2} \hat{\mathbf{i}}-\hat{\mathbf{j}}+7 \hat{\mathbf{k}}\)
and \(\overrightarrow{\mathbf{c}}=7 \hat{\mathbf{i}}-\hat{\mathbf{j}}+23 \hat{\mathbf{k}}\) are three vectors then which of the following statement is true.

1 \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular
2 \(\vec{a}, \vec{b}\) and \(\vec{c}\) are coplanar
3 \(\vec{a}, \vec{b}\) and \(\vec{c}\) are non-coplanar
4 \(\vec{a}\) and \(\vec{b}\) are collinear
Vector Algebra

87734 The value of \(\mathrm{m}\), if the vectors \(\hat{\mathbf{i}}-\hat{\mathbf{j}}-6 \hat{\mathbf{k}}, \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+\mathrm{m} \hat{\mathbf{k}}\) are coplanar, is

1 1
2 3
3 -1
4 -3
Vector Algebra

87742 A unit vector perpendicular to both the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\hat{\mathbf{j}}+\hat{\mathbf{k}}\) is

1 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\)
2 \(\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\)
3 \(\frac{-\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}\)
4 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{3}\)
Vector Algebra

87732 \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\mathbf{x} \hat{\mathbf{i}}+(x-1) \hat{\mathbf{j}}-\hat{\mathbf{k}}\). If the vector \(\vec{c}\) lies in the plane of \(\vec{a}\) and \(\vec{b}\), then \(x=\)

1 \(\frac{2}{3}\)
2 \(\frac{-3}{2}\)
3 \(\frac{-2}{3}\)
4 \(\frac{3}{2}\)
Vector Algebra

87733 If \(\overrightarrow{\mathbf{a}}=\mathbf{3} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\mathbf{2} \hat{\mathbf{i}}-\hat{\mathbf{j}}+7 \hat{\mathbf{k}}\)
and \(\overrightarrow{\mathbf{c}}=7 \hat{\mathbf{i}}-\hat{\mathbf{j}}+23 \hat{\mathbf{k}}\) are three vectors then which of the following statement is true.

1 \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular
2 \(\vec{a}, \vec{b}\) and \(\vec{c}\) are coplanar
3 \(\vec{a}, \vec{b}\) and \(\vec{c}\) are non-coplanar
4 \(\vec{a}\) and \(\vec{b}\) are collinear
Vector Algebra

87734 The value of \(\mathrm{m}\), if the vectors \(\hat{\mathbf{i}}-\hat{\mathbf{j}}-6 \hat{\mathbf{k}}, \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+\mathrm{m} \hat{\mathbf{k}}\) are coplanar, is

1 1
2 3
3 -1
4 -3
Vector Algebra

87742 A unit vector perpendicular to both the vectors \(\hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\hat{\mathbf{j}}+\hat{\mathbf{k}}\) is

1 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\)
2 \(\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}\)
3 \(\frac{-\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}\)
4 \(\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{3}\)