Addition and Projection of Vectors
Vector Algebra

87735 If the points \((2,1,-1), B(0,-1,0), C(4,0,4)\) and \(D(2,0, x)\) are coplanar then \(x=\)

1 4
2 1
3 2
4 3
Vector Algebra

87736 If three vectors \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}, \hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\mathbf{3} \hat{\mathbf{k}}\) and \(3 \hat{i}+\lambda \hat{i}+5 \hat{k}\) are coplanar, then the value of \(\lambda\) is

1 -4
2 -2
3 -1
4 -8
Vector Algebra

87737 The two vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+3 \hat{j}+5 \hat{k}\) represents the two sides \(\overrightarrow{\mathrm{AB}}\) and \(\overrightarrow{\mathrm{AC}}\) respectively of a \(\triangle \mathrm{ABC}\). The length of the median though \(A\) is

1 14
2 7
3 \(\sqrt{14}\)
4 \(\frac{\sqrt{14}}{2}\)
Vector Algebra

87738 If \(\vec{a}=3, \vec{b}=4, \vec{c}=5\) each one of \(\vec{a}, \vec{b} \& \vec{c}\) is perpendicular to the sum of the remaining then \([\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]\) is equal to

1 \(\frac{5}{\sqrt{2}}\)
2 \(\frac{2}{\sqrt{5}}\)
3 \(5 \sqrt{2}\)
4 \(\sqrt{5}\)
Vector Algebra

87739 The area of the parallelogram whose adjacent sides are \(\hat{i}+\hat{k}\) and \(2 \hat{i}+\hat{j}+\hat{k}\) is

1 3
2 \(\sqrt{2}\)
3 4
4 \(\sqrt{3}\)
Vector Algebra

87735 If the points \((2,1,-1), B(0,-1,0), C(4,0,4)\) and \(D(2,0, x)\) are coplanar then \(x=\)

1 4
2 1
3 2
4 3
Vector Algebra

87736 If three vectors \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}, \hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\mathbf{3} \hat{\mathbf{k}}\) and \(3 \hat{i}+\lambda \hat{i}+5 \hat{k}\) are coplanar, then the value of \(\lambda\) is

1 -4
2 -2
3 -1
4 -8
Vector Algebra

87737 The two vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+3 \hat{j}+5 \hat{k}\) represents the two sides \(\overrightarrow{\mathrm{AB}}\) and \(\overrightarrow{\mathrm{AC}}\) respectively of a \(\triangle \mathrm{ABC}\). The length of the median though \(A\) is

1 14
2 7
3 \(\sqrt{14}\)
4 \(\frac{\sqrt{14}}{2}\)
Vector Algebra

87738 If \(\vec{a}=3, \vec{b}=4, \vec{c}=5\) each one of \(\vec{a}, \vec{b} \& \vec{c}\) is perpendicular to the sum of the remaining then \([\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]\) is equal to

1 \(\frac{5}{\sqrt{2}}\)
2 \(\frac{2}{\sqrt{5}}\)
3 \(5 \sqrt{2}\)
4 \(\sqrt{5}\)
Vector Algebra

87739 The area of the parallelogram whose adjacent sides are \(\hat{i}+\hat{k}\) and \(2 \hat{i}+\hat{j}+\hat{k}\) is

1 3
2 \(\sqrt{2}\)
3 4
4 \(\sqrt{3}\)
Vector Algebra

87735 If the points \((2,1,-1), B(0,-1,0), C(4,0,4)\) and \(D(2,0, x)\) are coplanar then \(x=\)

1 4
2 1
3 2
4 3
Vector Algebra

87736 If three vectors \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}, \hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\mathbf{3} \hat{\mathbf{k}}\) and \(3 \hat{i}+\lambda \hat{i}+5 \hat{k}\) are coplanar, then the value of \(\lambda\) is

1 -4
2 -2
3 -1
4 -8
Vector Algebra

87737 The two vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+3 \hat{j}+5 \hat{k}\) represents the two sides \(\overrightarrow{\mathrm{AB}}\) and \(\overrightarrow{\mathrm{AC}}\) respectively of a \(\triangle \mathrm{ABC}\). The length of the median though \(A\) is

1 14
2 7
3 \(\sqrt{14}\)
4 \(\frac{\sqrt{14}}{2}\)
Vector Algebra

87738 If \(\vec{a}=3, \vec{b}=4, \vec{c}=5\) each one of \(\vec{a}, \vec{b} \& \vec{c}\) is perpendicular to the sum of the remaining then \([\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]\) is equal to

1 \(\frac{5}{\sqrt{2}}\)
2 \(\frac{2}{\sqrt{5}}\)
3 \(5 \sqrt{2}\)
4 \(\sqrt{5}\)
Vector Algebra

87739 The area of the parallelogram whose adjacent sides are \(\hat{i}+\hat{k}\) and \(2 \hat{i}+\hat{j}+\hat{k}\) is

1 3
2 \(\sqrt{2}\)
3 4
4 \(\sqrt{3}\)
Vector Algebra

87735 If the points \((2,1,-1), B(0,-1,0), C(4,0,4)\) and \(D(2,0, x)\) are coplanar then \(x=\)

1 4
2 1
3 2
4 3
Vector Algebra

87736 If three vectors \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}, \hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\mathbf{3} \hat{\mathbf{k}}\) and \(3 \hat{i}+\lambda \hat{i}+5 \hat{k}\) are coplanar, then the value of \(\lambda\) is

1 -4
2 -2
3 -1
4 -8
Vector Algebra

87737 The two vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+3 \hat{j}+5 \hat{k}\) represents the two sides \(\overrightarrow{\mathrm{AB}}\) and \(\overrightarrow{\mathrm{AC}}\) respectively of a \(\triangle \mathrm{ABC}\). The length of the median though \(A\) is

1 14
2 7
3 \(\sqrt{14}\)
4 \(\frac{\sqrt{14}}{2}\)
Vector Algebra

87738 If \(\vec{a}=3, \vec{b}=4, \vec{c}=5\) each one of \(\vec{a}, \vec{b} \& \vec{c}\) is perpendicular to the sum of the remaining then \([\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]\) is equal to

1 \(\frac{5}{\sqrt{2}}\)
2 \(\frac{2}{\sqrt{5}}\)
3 \(5 \sqrt{2}\)
4 \(\sqrt{5}\)
Vector Algebra

87739 The area of the parallelogram whose adjacent sides are \(\hat{i}+\hat{k}\) and \(2 \hat{i}+\hat{j}+\hat{k}\) is

1 3
2 \(\sqrt{2}\)
3 4
4 \(\sqrt{3}\)
Vector Algebra

87735 If the points \((2,1,-1), B(0,-1,0), C(4,0,4)\) and \(D(2,0, x)\) are coplanar then \(x=\)

1 4
2 1
3 2
4 3
Vector Algebra

87736 If three vectors \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}, \hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\mathbf{3} \hat{\mathbf{k}}\) and \(3 \hat{i}+\lambda \hat{i}+5 \hat{k}\) are coplanar, then the value of \(\lambda\) is

1 -4
2 -2
3 -1
4 -8
Vector Algebra

87737 The two vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}+3 \hat{j}+5 \hat{k}\) represents the two sides \(\overrightarrow{\mathrm{AB}}\) and \(\overrightarrow{\mathrm{AC}}\) respectively of a \(\triangle \mathrm{ABC}\). The length of the median though \(A\) is

1 14
2 7
3 \(\sqrt{14}\)
4 \(\frac{\sqrt{14}}{2}\)
Vector Algebra

87738 If \(\vec{a}=3, \vec{b}=4, \vec{c}=5\) each one of \(\vec{a}, \vec{b} \& \vec{c}\) is perpendicular to the sum of the remaining then \([\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]\) is equal to

1 \(\frac{5}{\sqrt{2}}\)
2 \(\frac{2}{\sqrt{5}}\)
3 \(5 \sqrt{2}\)
4 \(\sqrt{5}\)
Vector Algebra

87739 The area of the parallelogram whose adjacent sides are \(\hat{i}+\hat{k}\) and \(2 \hat{i}+\hat{j}+\hat{k}\) is

1 3
2 \(\sqrt{2}\)
3 4
4 \(\sqrt{3}\)