Addition and Projection of Vectors
Vector Algebra

87726 If the vectors \(\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}\) and \(2 \hat{i}+3 \hat{j}+m \hat{k}\) are coplanar, then \(\mathrm{m}=\)

1 -3
2 3
3 2
4 -2
Vector Algebra

87729 If the vectors \((2 \hat{i}-q \hat{j}+3 \hat{k})\) and \((4 \hat{i}-5 \hat{j}+6 \hat{k})\) are collinear, then the value of \(q\) is

1 \(\frac{5}{2}\)
2 \(\frac{2}{3}\)
3 \(\frac{-5}{2}\)
4 \(\frac{-2}{5}\)
Vector Algebra

87730 If the vectors \(\vec{a}=\vec{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \vec{i}-5 \hat{j}+P \hat{k}\) and \(\vec{c}=5 \hat{i}-9 \hat{j}+4 \hat{k}\) are coplanar, then the value of \(P\) is

1 \(-\frac{1}{3}\)
2 3
3 -3
4 \(\frac{1}{3}\)
Vector Algebra

87731 If the vectors \(\hat{i}+2 \hat{j}+x \hat{k}\) and \(y \hat{i}+6 \hat{j}+4 \hat{k}\) are collinear, then the values of \(x\) and \(y\) are

1 \(\frac{4}{3}, 3\)
2 4,3
3 3,4
4 \(\frac{1}{3}, 1\)
Vector Algebra

87726 If the vectors \(\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}\) and \(2 \hat{i}+3 \hat{j}+m \hat{k}\) are coplanar, then \(\mathrm{m}=\)

1 -3
2 3
3 2
4 -2
Vector Algebra

87729 If the vectors \((2 \hat{i}-q \hat{j}+3 \hat{k})\) and \((4 \hat{i}-5 \hat{j}+6 \hat{k})\) are collinear, then the value of \(q\) is

1 \(\frac{5}{2}\)
2 \(\frac{2}{3}\)
3 \(\frac{-5}{2}\)
4 \(\frac{-2}{5}\)
Vector Algebra

87730 If the vectors \(\vec{a}=\vec{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \vec{i}-5 \hat{j}+P \hat{k}\) and \(\vec{c}=5 \hat{i}-9 \hat{j}+4 \hat{k}\) are coplanar, then the value of \(P\) is

1 \(-\frac{1}{3}\)
2 3
3 -3
4 \(\frac{1}{3}\)
Vector Algebra

87731 If the vectors \(\hat{i}+2 \hat{j}+x \hat{k}\) and \(y \hat{i}+6 \hat{j}+4 \hat{k}\) are collinear, then the values of \(x\) and \(y\) are

1 \(\frac{4}{3}, 3\)
2 4,3
3 3,4
4 \(\frac{1}{3}, 1\)
Vector Algebra

87726 If the vectors \(\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}\) and \(2 \hat{i}+3 \hat{j}+m \hat{k}\) are coplanar, then \(\mathrm{m}=\)

1 -3
2 3
3 2
4 -2
Vector Algebra

87729 If the vectors \((2 \hat{i}-q \hat{j}+3 \hat{k})\) and \((4 \hat{i}-5 \hat{j}+6 \hat{k})\) are collinear, then the value of \(q\) is

1 \(\frac{5}{2}\)
2 \(\frac{2}{3}\)
3 \(\frac{-5}{2}\)
4 \(\frac{-2}{5}\)
Vector Algebra

87730 If the vectors \(\vec{a}=\vec{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \vec{i}-5 \hat{j}+P \hat{k}\) and \(\vec{c}=5 \hat{i}-9 \hat{j}+4 \hat{k}\) are coplanar, then the value of \(P\) is

1 \(-\frac{1}{3}\)
2 3
3 -3
4 \(\frac{1}{3}\)
Vector Algebra

87731 If the vectors \(\hat{i}+2 \hat{j}+x \hat{k}\) and \(y \hat{i}+6 \hat{j}+4 \hat{k}\) are collinear, then the values of \(x\) and \(y\) are

1 \(\frac{4}{3}, 3\)
2 4,3
3 3,4
4 \(\frac{1}{3}, 1\)
Vector Algebra

87726 If the vectors \(\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}\) and \(2 \hat{i}+3 \hat{j}+m \hat{k}\) are coplanar, then \(\mathrm{m}=\)

1 -3
2 3
3 2
4 -2
Vector Algebra

87729 If the vectors \((2 \hat{i}-q \hat{j}+3 \hat{k})\) and \((4 \hat{i}-5 \hat{j}+6 \hat{k})\) are collinear, then the value of \(q\) is

1 \(\frac{5}{2}\)
2 \(\frac{2}{3}\)
3 \(\frac{-5}{2}\)
4 \(\frac{-2}{5}\)
Vector Algebra

87730 If the vectors \(\vec{a}=\vec{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \vec{i}-5 \hat{j}+P \hat{k}\) and \(\vec{c}=5 \hat{i}-9 \hat{j}+4 \hat{k}\) are coplanar, then the value of \(P\) is

1 \(-\frac{1}{3}\)
2 3
3 -3
4 \(\frac{1}{3}\)
Vector Algebra

87731 If the vectors \(\hat{i}+2 \hat{j}+x \hat{k}\) and \(y \hat{i}+6 \hat{j}+4 \hat{k}\) are collinear, then the values of \(x\) and \(y\) are

1 \(\frac{4}{3}, 3\)
2 4,3
3 3,4
4 \(\frac{1}{3}, 1\)