Solution of Linear Differential Equation
Differential Equation

87545 Which one of the following is correct solution \(\left(\frac{d y}{d x}\right) \tan y=\sin (x+y)+\sin (x-y) ?\)

1 \(\sec x=C-2 \sec y\)
2 \(\sec y=C+2 \cos y\)
3 \(\sec y=C-2 \cos x\)
4 \(\sec x=C-2 \cos y\)
Differential Equation

87546 If \(x \frac{d y}{d x}+y=\frac{x f(x y)}{f^{\prime}(x y)}\), then \(|f(x y)|\) is equal to

1 \(\mathrm{ke}^{\mathrm{x}^{2} / 2}\)
2 \(\mathrm{ke}^{\mathrm{y}^{2} / 2}\)
3 \(\mathrm{ke}^{\mathrm{x}^{2}}\)
4 \(\mathrm{ke}^{\mathrm{y}^{2}}\)
Differential Equation

87547 Find the solution of the following differential equation : \(\sin ^{-1}\left(\frac{d y}{d x}\right)=x+y\)

1 \(x=\tan (x+y)+\sec (x+y)+c\)
2 \(x=\tan (x+y)-\sec (x+y)+c\)
3 \(x=\tan (x+y)+\sec ^{2}(x+y)+c\)
4 \(x=\tan (x+y)-\sec ^{2}(x+y)+c\)
Differential Equation

87549 In a triangle \(P Q R, A, B\) and \(C\) are the angles opposite the corresponding sides of lengths \(a, b\) and \(c\) respectively. If the side are \(a=5, b=13\) and \(c=12\) then \(\sin \frac{B}{2}+\cos \frac{B}{2}=\)

1 \(\frac{1}{2}\)
2 \(\frac{1}{\sqrt{2}}\)
3 \(\sqrt{2}\)
4 1
Differential Equation

87550 Let \(y=y(x)\) be the solution of the differential equation. \(x \frac{d y}{d x}+y=x \log _{e} x,(x>1)\). If \(2 y(2)=\) \(\log _{e} 4-1\), then \(y(e)\) is equal to

1 \(-\frac{\mathrm{e}}{2}\)
2 \(-\frac{\mathrm{e}^{2}}{2}\)
3 \(\frac{\mathrm{e}}{4}\)
4 \(\frac{\mathrm{e}^{2}}{4}\)
Differential Equation

87545 Which one of the following is correct solution \(\left(\frac{d y}{d x}\right) \tan y=\sin (x+y)+\sin (x-y) ?\)

1 \(\sec x=C-2 \sec y\)
2 \(\sec y=C+2 \cos y\)
3 \(\sec y=C-2 \cos x\)
4 \(\sec x=C-2 \cos y\)
Differential Equation

87546 If \(x \frac{d y}{d x}+y=\frac{x f(x y)}{f^{\prime}(x y)}\), then \(|f(x y)|\) is equal to

1 \(\mathrm{ke}^{\mathrm{x}^{2} / 2}\)
2 \(\mathrm{ke}^{\mathrm{y}^{2} / 2}\)
3 \(\mathrm{ke}^{\mathrm{x}^{2}}\)
4 \(\mathrm{ke}^{\mathrm{y}^{2}}\)
Differential Equation

87547 Find the solution of the following differential equation : \(\sin ^{-1}\left(\frac{d y}{d x}\right)=x+y\)

1 \(x=\tan (x+y)+\sec (x+y)+c\)
2 \(x=\tan (x+y)-\sec (x+y)+c\)
3 \(x=\tan (x+y)+\sec ^{2}(x+y)+c\)
4 \(x=\tan (x+y)-\sec ^{2}(x+y)+c\)
Differential Equation

87549 In a triangle \(P Q R, A, B\) and \(C\) are the angles opposite the corresponding sides of lengths \(a, b\) and \(c\) respectively. If the side are \(a=5, b=13\) and \(c=12\) then \(\sin \frac{B}{2}+\cos \frac{B}{2}=\)

1 \(\frac{1}{2}\)
2 \(\frac{1}{\sqrt{2}}\)
3 \(\sqrt{2}\)
4 1
Differential Equation

87550 Let \(y=y(x)\) be the solution of the differential equation. \(x \frac{d y}{d x}+y=x \log _{e} x,(x>1)\). If \(2 y(2)=\) \(\log _{e} 4-1\), then \(y(e)\) is equal to

1 \(-\frac{\mathrm{e}}{2}\)
2 \(-\frac{\mathrm{e}^{2}}{2}\)
3 \(\frac{\mathrm{e}}{4}\)
4 \(\frac{\mathrm{e}^{2}}{4}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87545 Which one of the following is correct solution \(\left(\frac{d y}{d x}\right) \tan y=\sin (x+y)+\sin (x-y) ?\)

1 \(\sec x=C-2 \sec y\)
2 \(\sec y=C+2 \cos y\)
3 \(\sec y=C-2 \cos x\)
4 \(\sec x=C-2 \cos y\)
Differential Equation

87546 If \(x \frac{d y}{d x}+y=\frac{x f(x y)}{f^{\prime}(x y)}\), then \(|f(x y)|\) is equal to

1 \(\mathrm{ke}^{\mathrm{x}^{2} / 2}\)
2 \(\mathrm{ke}^{\mathrm{y}^{2} / 2}\)
3 \(\mathrm{ke}^{\mathrm{x}^{2}}\)
4 \(\mathrm{ke}^{\mathrm{y}^{2}}\)
Differential Equation

87547 Find the solution of the following differential equation : \(\sin ^{-1}\left(\frac{d y}{d x}\right)=x+y\)

1 \(x=\tan (x+y)+\sec (x+y)+c\)
2 \(x=\tan (x+y)-\sec (x+y)+c\)
3 \(x=\tan (x+y)+\sec ^{2}(x+y)+c\)
4 \(x=\tan (x+y)-\sec ^{2}(x+y)+c\)
Differential Equation

87549 In a triangle \(P Q R, A, B\) and \(C\) are the angles opposite the corresponding sides of lengths \(a, b\) and \(c\) respectively. If the side are \(a=5, b=13\) and \(c=12\) then \(\sin \frac{B}{2}+\cos \frac{B}{2}=\)

1 \(\frac{1}{2}\)
2 \(\frac{1}{\sqrt{2}}\)
3 \(\sqrt{2}\)
4 1
Differential Equation

87550 Let \(y=y(x)\) be the solution of the differential equation. \(x \frac{d y}{d x}+y=x \log _{e} x,(x>1)\). If \(2 y(2)=\) \(\log _{e} 4-1\), then \(y(e)\) is equal to

1 \(-\frac{\mathrm{e}}{2}\)
2 \(-\frac{\mathrm{e}^{2}}{2}\)
3 \(\frac{\mathrm{e}}{4}\)
4 \(\frac{\mathrm{e}^{2}}{4}\)
Differential Equation

87545 Which one of the following is correct solution \(\left(\frac{d y}{d x}\right) \tan y=\sin (x+y)+\sin (x-y) ?\)

1 \(\sec x=C-2 \sec y\)
2 \(\sec y=C+2 \cos y\)
3 \(\sec y=C-2 \cos x\)
4 \(\sec x=C-2 \cos y\)
Differential Equation

87546 If \(x \frac{d y}{d x}+y=\frac{x f(x y)}{f^{\prime}(x y)}\), then \(|f(x y)|\) is equal to

1 \(\mathrm{ke}^{\mathrm{x}^{2} / 2}\)
2 \(\mathrm{ke}^{\mathrm{y}^{2} / 2}\)
3 \(\mathrm{ke}^{\mathrm{x}^{2}}\)
4 \(\mathrm{ke}^{\mathrm{y}^{2}}\)
Differential Equation

87547 Find the solution of the following differential equation : \(\sin ^{-1}\left(\frac{d y}{d x}\right)=x+y\)

1 \(x=\tan (x+y)+\sec (x+y)+c\)
2 \(x=\tan (x+y)-\sec (x+y)+c\)
3 \(x=\tan (x+y)+\sec ^{2}(x+y)+c\)
4 \(x=\tan (x+y)-\sec ^{2}(x+y)+c\)
Differential Equation

87549 In a triangle \(P Q R, A, B\) and \(C\) are the angles opposite the corresponding sides of lengths \(a, b\) and \(c\) respectively. If the side are \(a=5, b=13\) and \(c=12\) then \(\sin \frac{B}{2}+\cos \frac{B}{2}=\)

1 \(\frac{1}{2}\)
2 \(\frac{1}{\sqrt{2}}\)
3 \(\sqrt{2}\)
4 1
Differential Equation

87550 Let \(y=y(x)\) be the solution of the differential equation. \(x \frac{d y}{d x}+y=x \log _{e} x,(x>1)\). If \(2 y(2)=\) \(\log _{e} 4-1\), then \(y(e)\) is equal to

1 \(-\frac{\mathrm{e}}{2}\)
2 \(-\frac{\mathrm{e}^{2}}{2}\)
3 \(\frac{\mathrm{e}}{4}\)
4 \(\frac{\mathrm{e}^{2}}{4}\)
Differential Equation

87545 Which one of the following is correct solution \(\left(\frac{d y}{d x}\right) \tan y=\sin (x+y)+\sin (x-y) ?\)

1 \(\sec x=C-2 \sec y\)
2 \(\sec y=C+2 \cos y\)
3 \(\sec y=C-2 \cos x\)
4 \(\sec x=C-2 \cos y\)
Differential Equation

87546 If \(x \frac{d y}{d x}+y=\frac{x f(x y)}{f^{\prime}(x y)}\), then \(|f(x y)|\) is equal to

1 \(\mathrm{ke}^{\mathrm{x}^{2} / 2}\)
2 \(\mathrm{ke}^{\mathrm{y}^{2} / 2}\)
3 \(\mathrm{ke}^{\mathrm{x}^{2}}\)
4 \(\mathrm{ke}^{\mathrm{y}^{2}}\)
Differential Equation

87547 Find the solution of the following differential equation : \(\sin ^{-1}\left(\frac{d y}{d x}\right)=x+y\)

1 \(x=\tan (x+y)+\sec (x+y)+c\)
2 \(x=\tan (x+y)-\sec (x+y)+c\)
3 \(x=\tan (x+y)+\sec ^{2}(x+y)+c\)
4 \(x=\tan (x+y)-\sec ^{2}(x+y)+c\)
Differential Equation

87549 In a triangle \(P Q R, A, B\) and \(C\) are the angles opposite the corresponding sides of lengths \(a, b\) and \(c\) respectively. If the side are \(a=5, b=13\) and \(c=12\) then \(\sin \frac{B}{2}+\cos \frac{B}{2}=\)

1 \(\frac{1}{2}\)
2 \(\frac{1}{\sqrt{2}}\)
3 \(\sqrt{2}\)
4 1
Differential Equation

87550 Let \(y=y(x)\) be the solution of the differential equation. \(x \frac{d y}{d x}+y=x \log _{e} x,(x>1)\). If \(2 y(2)=\) \(\log _{e} 4-1\), then \(y(e)\) is equal to

1 \(-\frac{\mathrm{e}}{2}\)
2 \(-\frac{\mathrm{e}^{2}}{2}\)
3 \(\frac{\mathrm{e}}{4}\)
4 \(\frac{\mathrm{e}^{2}}{4}\)