87538 Let \(f:[0,1] \rightarrow R\) be such that \(f(x y)=f(x)\). \(f(y)\), for all \(x, y \in[0,1]\) and \(f(0) \neq 0\).If \(y=y\) ( \(x\) ) satisfies the differential equation, \(\frac{d y}{d x}=f(x)\) with \(y(0)=\) 1 , then \(y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)\) is equal to
87538 Let \(f:[0,1] \rightarrow R\) be such that \(f(x y)=f(x)\). \(f(y)\), for all \(x, y \in[0,1]\) and \(f(0) \neq 0\).If \(y=y\) ( \(x\) ) satisfies the differential equation, \(\frac{d y}{d x}=f(x)\) with \(y(0)=\) 1 , then \(y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)\) is equal to
87538 Let \(f:[0,1] \rightarrow R\) be such that \(f(x y)=f(x)\). \(f(y)\), for all \(x, y \in[0,1]\) and \(f(0) \neq 0\).If \(y=y\) ( \(x\) ) satisfies the differential equation, \(\frac{d y}{d x}=f(x)\) with \(y(0)=\) 1 , then \(y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)\) is equal to
87538 Let \(f:[0,1] \rightarrow R\) be such that \(f(x y)=f(x)\). \(f(y)\), for all \(x, y \in[0,1]\) and \(f(0) \neq 0\).If \(y=y\) ( \(x\) ) satisfies the differential equation, \(\frac{d y}{d x}=f(x)\) with \(y(0)=\) 1 , then \(y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)\) is equal to