Solution of Linear Differential Equation
Differential Equation

87545 Which one of the following is correct solution (dydx)tany=sin(x+y)+sin(xy)?

1 secx=C2secy
2 secy=C+2cosy
3 secy=C2cosx
4 secx=C2cosy
Differential Equation

87546 If xdydx+y=xf(xy)f(xy), then |f(xy)| is equal to

1 kex2/2
2 key2/2
3 kex2
4 key2
Differential Equation

87547 Find the solution of the following differential equation : sin1(dydx)=x+y

1 x=tan(x+y)+sec(x+y)+c
2 x=tan(x+y)sec(x+y)+c
3 x=tan(x+y)+sec2(x+y)+c
4 x=tan(x+y)sec2(x+y)+c
Differential Equation

87549 In a triangle PQR,A,B and C are the angles opposite the corresponding sides of lengths a,b and c respectively. If the side are a=5,b=13 and c=12 then sinB2+cosB2=

1 12
2 12
3 2
4 1
Differential Equation

87550 Let y=y(x) be the solution of the differential equation. xdydx+y=xlogex,(x>1). If 2y(2)= loge41, then y(e) is equal to

1 e2
2 e22
3 e4
4 e24
Differential Equation

87545 Which one of the following is correct solution (dydx)tany=sin(x+y)+sin(xy)?

1 secx=C2secy
2 secy=C+2cosy
3 secy=C2cosx
4 secx=C2cosy
Differential Equation

87546 If xdydx+y=xf(xy)f(xy), then |f(xy)| is equal to

1 kex2/2
2 key2/2
3 kex2
4 key2
Differential Equation

87547 Find the solution of the following differential equation : sin1(dydx)=x+y

1 x=tan(x+y)+sec(x+y)+c
2 x=tan(x+y)sec(x+y)+c
3 x=tan(x+y)+sec2(x+y)+c
4 x=tan(x+y)sec2(x+y)+c
Differential Equation

87549 In a triangle PQR,A,B and C are the angles opposite the corresponding sides of lengths a,b and c respectively. If the side are a=5,b=13 and c=12 then sinB2+cosB2=

1 12
2 12
3 2
4 1
Differential Equation

87550 Let y=y(x) be the solution of the differential equation. xdydx+y=xlogex,(x>1). If 2y(2)= loge41, then y(e) is equal to

1 e2
2 e22
3 e4
4 e24
Differential Equation

87545 Which one of the following is correct solution (dydx)tany=sin(x+y)+sin(xy)?

1 secx=C2secy
2 secy=C+2cosy
3 secy=C2cosx
4 secx=C2cosy
Differential Equation

87546 If xdydx+y=xf(xy)f(xy), then |f(xy)| is equal to

1 kex2/2
2 key2/2
3 kex2
4 key2
Differential Equation

87547 Find the solution of the following differential equation : sin1(dydx)=x+y

1 x=tan(x+y)+sec(x+y)+c
2 x=tan(x+y)sec(x+y)+c
3 x=tan(x+y)+sec2(x+y)+c
4 x=tan(x+y)sec2(x+y)+c
Differential Equation

87549 In a triangle PQR,A,B and C are the angles opposite the corresponding sides of lengths a,b and c respectively. If the side are a=5,b=13 and c=12 then sinB2+cosB2=

1 12
2 12
3 2
4 1
Differential Equation

87550 Let y=y(x) be the solution of the differential equation. xdydx+y=xlogex,(x>1). If 2y(2)= loge41, then y(e) is equal to

1 e2
2 e22
3 e4
4 e24
Differential Equation

87545 Which one of the following is correct solution (dydx)tany=sin(x+y)+sin(xy)?

1 secx=C2secy
2 secy=C+2cosy
3 secy=C2cosx
4 secx=C2cosy
Differential Equation

87546 If xdydx+y=xf(xy)f(xy), then |f(xy)| is equal to

1 kex2/2
2 key2/2
3 kex2
4 key2
Differential Equation

87547 Find the solution of the following differential equation : sin1(dydx)=x+y

1 x=tan(x+y)+sec(x+y)+c
2 x=tan(x+y)sec(x+y)+c
3 x=tan(x+y)+sec2(x+y)+c
4 x=tan(x+y)sec2(x+y)+c
Differential Equation

87549 In a triangle PQR,A,B and C are the angles opposite the corresponding sides of lengths a,b and c respectively. If the side are a=5,b=13 and c=12 then sinB2+cosB2=

1 12
2 12
3 2
4 1
Differential Equation

87550 Let y=y(x) be the solution of the differential equation. xdydx+y=xlogex,(x>1). If 2y(2)= loge41, then y(e) is equal to

1 e2
2 e22
3 e4
4 e24
Differential Equation

87545 Which one of the following is correct solution (dydx)tany=sin(x+y)+sin(xy)?

1 secx=C2secy
2 secy=C+2cosy
3 secy=C2cosx
4 secx=C2cosy
Differential Equation

87546 If xdydx+y=xf(xy)f(xy), then |f(xy)| is equal to

1 kex2/2
2 key2/2
3 kex2
4 key2
Differential Equation

87547 Find the solution of the following differential equation : sin1(dydx)=x+y

1 x=tan(x+y)+sec(x+y)+c
2 x=tan(x+y)sec(x+y)+c
3 x=tan(x+y)+sec2(x+y)+c
4 x=tan(x+y)sec2(x+y)+c
Differential Equation

87549 In a triangle PQR,A,B and C are the angles opposite the corresponding sides of lengths a,b and c respectively. If the side are a=5,b=13 and c=12 then sinB2+cosB2=

1 12
2 12
3 2
4 1
Differential Equation

87550 Let y=y(x) be the solution of the differential equation. xdydx+y=xlogex,(x>1). If 2y(2)= loge41, then y(e) is equal to

1 e2
2 e22
3 e4
4 e24