Solution of Linear Differential Equation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87551 Let \(y=y(x)\) be the solution of the differential equation \(\cos x(3 \sin x+\cos x+3) d y=[1+y \sin x\)
\((3 \sin x+\cos x+3] d x, 0 \leq x \leq \frac{\pi}{2}, y(0)=0\) Then, \(y\left(\frac{\pi}{3}\right)\) is equal to

1 \(2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+9}{6}\right)\)
2 \(2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+10}{11}\right)\)
3 \(2 \log _{\mathrm{e}}\left(\frac{\sqrt{3}+7}{2}\right)\)
4 \(2 \log _{\mathrm{e}}\left(\frac{3 \sqrt{3}-8}{4}\right)\)
Differential Equation

87552 Let \(y=y(x)\) be a solution curve of the differential equation \((y+1) \tan ^{2} x d x+\tan x\) \(d y+y d x=0, x \in\left(0, \frac{\pi}{2}\right) \cdot \lim _{x \rightarrow 0^{+}} x y(x)=1\), then value of \(y\left(\frac{\pi}{4}\right)\) is

1 \(-\frac{\pi}{4}\)
2 \(\frac{\pi}{4}-1\)
3 \(\frac{\pi}{4}+1\)
4 \(\frac{\pi}{4}\)
Differential Equation

87556 Let \(y=y(x)\) be the solution of the differential equation, \(\frac{2+\sin x}{y+1} \cdot \frac{d y}{d x}=-\cos x, y>0, y(0)=1\). If \(y(\pi)=a\) and \(\frac{d y}{d x}\) at \(x=\pi\) is \(b\), then the ordered pair \((a, b)\) is equal to

1 \((1,1)\)
2 \(\left(2, \frac{3}{2}\right)\)
3 \((1,-1)\)
4 \((2,1)\)
Differential Equation

87557 Which of the following is true for \(y(x)\), that satisfies the differential
equation \(\frac{d y}{d x}=x y-1+x-y ; y(0)=0\)

1 \(y(1)=e^{-\frac{1}{2}}-1\)
2 \(y(1)=e^{\frac{1}{2}}-e^{-\frac{1}{2}}\)
3 \(y(1)=1\)
4 \(y(1)=e^{\frac{1}{2}}-1\)
Differential Equation

87551 Let \(y=y(x)\) be the solution of the differential equation \(\cos x(3 \sin x+\cos x+3) d y=[1+y \sin x\)
\((3 \sin x+\cos x+3] d x, 0 \leq x \leq \frac{\pi}{2}, y(0)=0\) Then, \(y\left(\frac{\pi}{3}\right)\) is equal to

1 \(2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+9}{6}\right)\)
2 \(2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+10}{11}\right)\)
3 \(2 \log _{\mathrm{e}}\left(\frac{\sqrt{3}+7}{2}\right)\)
4 \(2 \log _{\mathrm{e}}\left(\frac{3 \sqrt{3}-8}{4}\right)\)
Differential Equation

87552 Let \(y=y(x)\) be a solution curve of the differential equation \((y+1) \tan ^{2} x d x+\tan x\) \(d y+y d x=0, x \in\left(0, \frac{\pi}{2}\right) \cdot \lim _{x \rightarrow 0^{+}} x y(x)=1\), then value of \(y\left(\frac{\pi}{4}\right)\) is

1 \(-\frac{\pi}{4}\)
2 \(\frac{\pi}{4}-1\)
3 \(\frac{\pi}{4}+1\)
4 \(\frac{\pi}{4}\)
Differential Equation

87556 Let \(y=y(x)\) be the solution of the differential equation, \(\frac{2+\sin x}{y+1} \cdot \frac{d y}{d x}=-\cos x, y>0, y(0)=1\). If \(y(\pi)=a\) and \(\frac{d y}{d x}\) at \(x=\pi\) is \(b\), then the ordered pair \((a, b)\) is equal to

1 \((1,1)\)
2 \(\left(2, \frac{3}{2}\right)\)
3 \((1,-1)\)
4 \((2,1)\)
Differential Equation

87557 Which of the following is true for \(y(x)\), that satisfies the differential
equation \(\frac{d y}{d x}=x y-1+x-y ; y(0)=0\)

1 \(y(1)=e^{-\frac{1}{2}}-1\)
2 \(y(1)=e^{\frac{1}{2}}-e^{-\frac{1}{2}}\)
3 \(y(1)=1\)
4 \(y(1)=e^{\frac{1}{2}}-1\)
Differential Equation

87551 Let \(y=y(x)\) be the solution of the differential equation \(\cos x(3 \sin x+\cos x+3) d y=[1+y \sin x\)
\((3 \sin x+\cos x+3] d x, 0 \leq x \leq \frac{\pi}{2}, y(0)=0\) Then, \(y\left(\frac{\pi}{3}\right)\) is equal to

1 \(2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+9}{6}\right)\)
2 \(2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+10}{11}\right)\)
3 \(2 \log _{\mathrm{e}}\left(\frac{\sqrt{3}+7}{2}\right)\)
4 \(2 \log _{\mathrm{e}}\left(\frac{3 \sqrt{3}-8}{4}\right)\)
Differential Equation

87552 Let \(y=y(x)\) be a solution curve of the differential equation \((y+1) \tan ^{2} x d x+\tan x\) \(d y+y d x=0, x \in\left(0, \frac{\pi}{2}\right) \cdot \lim _{x \rightarrow 0^{+}} x y(x)=1\), then value of \(y\left(\frac{\pi}{4}\right)\) is

1 \(-\frac{\pi}{4}\)
2 \(\frac{\pi}{4}-1\)
3 \(\frac{\pi}{4}+1\)
4 \(\frac{\pi}{4}\)
Differential Equation

87556 Let \(y=y(x)\) be the solution of the differential equation, \(\frac{2+\sin x}{y+1} \cdot \frac{d y}{d x}=-\cos x, y>0, y(0)=1\). If \(y(\pi)=a\) and \(\frac{d y}{d x}\) at \(x=\pi\) is \(b\), then the ordered pair \((a, b)\) is equal to

1 \((1,1)\)
2 \(\left(2, \frac{3}{2}\right)\)
3 \((1,-1)\)
4 \((2,1)\)
Differential Equation

87557 Which of the following is true for \(y(x)\), that satisfies the differential
equation \(\frac{d y}{d x}=x y-1+x-y ; y(0)=0\)

1 \(y(1)=e^{-\frac{1}{2}}-1\)
2 \(y(1)=e^{\frac{1}{2}}-e^{-\frac{1}{2}}\)
3 \(y(1)=1\)
4 \(y(1)=e^{\frac{1}{2}}-1\)
Differential Equation

87551 Let \(y=y(x)\) be the solution of the differential equation \(\cos x(3 \sin x+\cos x+3) d y=[1+y \sin x\)
\((3 \sin x+\cos x+3] d x, 0 \leq x \leq \frac{\pi}{2}, y(0)=0\) Then, \(y\left(\frac{\pi}{3}\right)\) is equal to

1 \(2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+9}{6}\right)\)
2 \(2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+10}{11}\right)\)
3 \(2 \log _{\mathrm{e}}\left(\frac{\sqrt{3}+7}{2}\right)\)
4 \(2 \log _{\mathrm{e}}\left(\frac{3 \sqrt{3}-8}{4}\right)\)
Differential Equation

87552 Let \(y=y(x)\) be a solution curve of the differential equation \((y+1) \tan ^{2} x d x+\tan x\) \(d y+y d x=0, x \in\left(0, \frac{\pi}{2}\right) \cdot \lim _{x \rightarrow 0^{+}} x y(x)=1\), then value of \(y\left(\frac{\pi}{4}\right)\) is

1 \(-\frac{\pi}{4}\)
2 \(\frac{\pi}{4}-1\)
3 \(\frac{\pi}{4}+1\)
4 \(\frac{\pi}{4}\)
Differential Equation

87556 Let \(y=y(x)\) be the solution of the differential equation, \(\frac{2+\sin x}{y+1} \cdot \frac{d y}{d x}=-\cos x, y>0, y(0)=1\). If \(y(\pi)=a\) and \(\frac{d y}{d x}\) at \(x=\pi\) is \(b\), then the ordered pair \((a, b)\) is equal to

1 \((1,1)\)
2 \(\left(2, \frac{3}{2}\right)\)
3 \((1,-1)\)
4 \((2,1)\)
Differential Equation

87557 Which of the following is true for \(y(x)\), that satisfies the differential
equation \(\frac{d y}{d x}=x y-1+x-y ; y(0)=0\)

1 \(y(1)=e^{-\frac{1}{2}}-1\)
2 \(y(1)=e^{\frac{1}{2}}-e^{-\frac{1}{2}}\)
3 \(y(1)=1\)
4 \(y(1)=e^{\frac{1}{2}}-1\)