Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86694 The value of \(\int_0^4|x-1| d x\) is

1 \(\frac{5}{2}\)
2 5
3 4
4 1
Integral Calculus

86695 \(\int_{-2}^1[x+1] d x=\), (Where \([x]\) is greatest integer function not greater than \(x\) )

1 -1
2 0
3 1
4 2
Integral Calculus

86696 \(\int_{-a}^{a} x^{2}\left(\frac{e^{x^{3}}-e^{-x^{3}}}{e^{x^{3}}+e^{-x^{3}}}\right) d x=\)

1 \(2 \int_{0}^{a} x^{2}\left(\frac{\mathrm{e}^{x^{3}}-\mathrm{e}^{-\mathrm{x}^{3}}}{\mathrm{e}^{\mathrm{x}^{3}}+\mathrm{e}^{-\mathrm{x}^{2}}}\right) \mathrm{dx}\)
2 \(\mathrm{a}\)
3 \(\mathrm{a}^{2}\)
4 0
Integral Calculus

86697 \(\int_{0}^{4}|x-2| d x=\)

1 8
2 0
3 2
4 4
Integral Calculus

86698 \(\int_{-2}^{2}[x] d x=\), where \([x]\) is the greatest integer function

1 0
2 4
3 2
4 -2
Integral Calculus

86694 The value of \(\int_0^4|x-1| d x\) is

1 \(\frac{5}{2}\)
2 5
3 4
4 1
Integral Calculus

86695 \(\int_{-2}^1[x+1] d x=\), (Where \([x]\) is greatest integer function not greater than \(x\) )

1 -1
2 0
3 1
4 2
Integral Calculus

86696 \(\int_{-a}^{a} x^{2}\left(\frac{e^{x^{3}}-e^{-x^{3}}}{e^{x^{3}}+e^{-x^{3}}}\right) d x=\)

1 \(2 \int_{0}^{a} x^{2}\left(\frac{\mathrm{e}^{x^{3}}-\mathrm{e}^{-\mathrm{x}^{3}}}{\mathrm{e}^{\mathrm{x}^{3}}+\mathrm{e}^{-\mathrm{x}^{2}}}\right) \mathrm{dx}\)
2 \(\mathrm{a}\)
3 \(\mathrm{a}^{2}\)
4 0
Integral Calculus

86697 \(\int_{0}^{4}|x-2| d x=\)

1 8
2 0
3 2
4 4
Integral Calculus

86698 \(\int_{-2}^{2}[x] d x=\), where \([x]\) is the greatest integer function

1 0
2 4
3 2
4 -2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86694 The value of \(\int_0^4|x-1| d x\) is

1 \(\frac{5}{2}\)
2 5
3 4
4 1
Integral Calculus

86695 \(\int_{-2}^1[x+1] d x=\), (Where \([x]\) is greatest integer function not greater than \(x\) )

1 -1
2 0
3 1
4 2
Integral Calculus

86696 \(\int_{-a}^{a} x^{2}\left(\frac{e^{x^{3}}-e^{-x^{3}}}{e^{x^{3}}+e^{-x^{3}}}\right) d x=\)

1 \(2 \int_{0}^{a} x^{2}\left(\frac{\mathrm{e}^{x^{3}}-\mathrm{e}^{-\mathrm{x}^{3}}}{\mathrm{e}^{\mathrm{x}^{3}}+\mathrm{e}^{-\mathrm{x}^{2}}}\right) \mathrm{dx}\)
2 \(\mathrm{a}\)
3 \(\mathrm{a}^{2}\)
4 0
Integral Calculus

86697 \(\int_{0}^{4}|x-2| d x=\)

1 8
2 0
3 2
4 4
Integral Calculus

86698 \(\int_{-2}^{2}[x] d x=\), where \([x]\) is the greatest integer function

1 0
2 4
3 2
4 -2
Integral Calculus

86694 The value of \(\int_0^4|x-1| d x\) is

1 \(\frac{5}{2}\)
2 5
3 4
4 1
Integral Calculus

86695 \(\int_{-2}^1[x+1] d x=\), (Where \([x]\) is greatest integer function not greater than \(x\) )

1 -1
2 0
3 1
4 2
Integral Calculus

86696 \(\int_{-a}^{a} x^{2}\left(\frac{e^{x^{3}}-e^{-x^{3}}}{e^{x^{3}}+e^{-x^{3}}}\right) d x=\)

1 \(2 \int_{0}^{a} x^{2}\left(\frac{\mathrm{e}^{x^{3}}-\mathrm{e}^{-\mathrm{x}^{3}}}{\mathrm{e}^{\mathrm{x}^{3}}+\mathrm{e}^{-\mathrm{x}^{2}}}\right) \mathrm{dx}\)
2 \(\mathrm{a}\)
3 \(\mathrm{a}^{2}\)
4 0
Integral Calculus

86697 \(\int_{0}^{4}|x-2| d x=\)

1 8
2 0
3 2
4 4
Integral Calculus

86698 \(\int_{-2}^{2}[x] d x=\), where \([x]\) is the greatest integer function

1 0
2 4
3 2
4 -2
Integral Calculus

86694 The value of \(\int_0^4|x-1| d x\) is

1 \(\frac{5}{2}\)
2 5
3 4
4 1
Integral Calculus

86695 \(\int_{-2}^1[x+1] d x=\), (Where \([x]\) is greatest integer function not greater than \(x\) )

1 -1
2 0
3 1
4 2
Integral Calculus

86696 \(\int_{-a}^{a} x^{2}\left(\frac{e^{x^{3}}-e^{-x^{3}}}{e^{x^{3}}+e^{-x^{3}}}\right) d x=\)

1 \(2 \int_{0}^{a} x^{2}\left(\frac{\mathrm{e}^{x^{3}}-\mathrm{e}^{-\mathrm{x}^{3}}}{\mathrm{e}^{\mathrm{x}^{3}}+\mathrm{e}^{-\mathrm{x}^{2}}}\right) \mathrm{dx}\)
2 \(\mathrm{a}\)
3 \(\mathrm{a}^{2}\)
4 0
Integral Calculus

86697 \(\int_{0}^{4}|x-2| d x=\)

1 8
2 0
3 2
4 4
Integral Calculus

86698 \(\int_{-2}^{2}[x] d x=\), where \([x]\) is the greatest integer function

1 0
2 4
3 2
4 -2