Definite Integrals of Odd, Even and Periodic Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86689 The value of \(\int_{0}^{1} \frac{\log (1+\mathrm{x})}{1+\mathrm{x}^{2}} \mathrm{dx}\) is

1 \(\frac{\pi}{4} \log 2\)
2 \(\frac{1}{2}\)
3 \(\frac{\pi}{8} \log 2\)
4 \(\frac{\pi}{2} \log 2\)
Integral Calculus

86690 \(\int_{0}^{1} \sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}} \mathrm{dx}=\)

1 \(\frac{\pi}{2}-1\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{2}+1\)
4 \(\frac{1}{2}\)
Integral Calculus

86692 The value of \(\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} d x\) is

1 10
2 0
3 8
4 3
Integral Calculus

86693 \(\int_{0}^{\pi / 4} \log \left(\frac{\sin x+\cos x}{\cos x}\right) d x\) is equal to

1 \(\frac{\pi}{2} \log 2\)
2 \(\log 2\)
3 \(\frac{\pi}{4} \log 2\)
4 \(\frac{\pi}{8} \log 2\)
Integral Calculus

86689 The value of \(\int_{0}^{1} \frac{\log (1+\mathrm{x})}{1+\mathrm{x}^{2}} \mathrm{dx}\) is

1 \(\frac{\pi}{4} \log 2\)
2 \(\frac{1}{2}\)
3 \(\frac{\pi}{8} \log 2\)
4 \(\frac{\pi}{2} \log 2\)
Integral Calculus

86690 \(\int_{0}^{1} \sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}} \mathrm{dx}=\)

1 \(\frac{\pi}{2}-1\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{2}+1\)
4 \(\frac{1}{2}\)
Integral Calculus

86692 The value of \(\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} d x\) is

1 10
2 0
3 8
4 3
Integral Calculus

86693 \(\int_{0}^{\pi / 4} \log \left(\frac{\sin x+\cos x}{\cos x}\right) d x\) is equal to

1 \(\frac{\pi}{2} \log 2\)
2 \(\log 2\)
3 \(\frac{\pi}{4} \log 2\)
4 \(\frac{\pi}{8} \log 2\)
Integral Calculus

86689 The value of \(\int_{0}^{1} \frac{\log (1+\mathrm{x})}{1+\mathrm{x}^{2}} \mathrm{dx}\) is

1 \(\frac{\pi}{4} \log 2\)
2 \(\frac{1}{2}\)
3 \(\frac{\pi}{8} \log 2\)
4 \(\frac{\pi}{2} \log 2\)
Integral Calculus

86690 \(\int_{0}^{1} \sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}} \mathrm{dx}=\)

1 \(\frac{\pi}{2}-1\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{2}+1\)
4 \(\frac{1}{2}\)
Integral Calculus

86692 The value of \(\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} d x\) is

1 10
2 0
3 8
4 3
Integral Calculus

86693 \(\int_{0}^{\pi / 4} \log \left(\frac{\sin x+\cos x}{\cos x}\right) d x\) is equal to

1 \(\frac{\pi}{2} \log 2\)
2 \(\log 2\)
3 \(\frac{\pi}{4} \log 2\)
4 \(\frac{\pi}{8} \log 2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86689 The value of \(\int_{0}^{1} \frac{\log (1+\mathrm{x})}{1+\mathrm{x}^{2}} \mathrm{dx}\) is

1 \(\frac{\pi}{4} \log 2\)
2 \(\frac{1}{2}\)
3 \(\frac{\pi}{8} \log 2\)
4 \(\frac{\pi}{2} \log 2\)
Integral Calculus

86690 \(\int_{0}^{1} \sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}} \mathrm{dx}=\)

1 \(\frac{\pi}{2}-1\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{2}+1\)
4 \(\frac{1}{2}\)
Integral Calculus

86692 The value of \(\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} d x\) is

1 10
2 0
3 8
4 3
Integral Calculus

86693 \(\int_{0}^{\pi / 4} \log \left(\frac{\sin x+\cos x}{\cos x}\right) d x\) is equal to

1 \(\frac{\pi}{2} \log 2\)
2 \(\log 2\)
3 \(\frac{\pi}{4} \log 2\)
4 \(\frac{\pi}{8} \log 2\)