Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86708 \(\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin x}\right) d x\) is

1 2
2 \(3 / 4\)
3 0
4 -2
Integral Calculus

86709 \(\int_{-\pi / 4}^{\pi / 4} \frac{d x}{1+\cos 2 x}\) is equal to

1 1
2 2
3 3
4 4
Integral Calculus

86710 \(\int_{0}^{2 \pi} \sin ^{9} x d x\) is equal to

1 0
2 \(18 \pi\)
3 \(9 \pi\)
4 18
Integral Calculus

86711 The value of the integral \(\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x, a>0\) is

1 1
2 0
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86708 \(\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin x}\right) d x\) is

1 2
2 \(3 / 4\)
3 0
4 -2
Integral Calculus

86709 \(\int_{-\pi / 4}^{\pi / 4} \frac{d x}{1+\cos 2 x}\) is equal to

1 1
2 2
3 3
4 4
Integral Calculus

86710 \(\int_{0}^{2 \pi} \sin ^{9} x d x\) is equal to

1 0
2 \(18 \pi\)
3 \(9 \pi\)
4 18
Integral Calculus

86711 The value of the integral \(\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x, a>0\) is

1 1
2 0
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86708 \(\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin x}\right) d x\) is

1 2
2 \(3 / 4\)
3 0
4 -2
Integral Calculus

86709 \(\int_{-\pi / 4}^{\pi / 4} \frac{d x}{1+\cos 2 x}\) is equal to

1 1
2 2
3 3
4 4
Integral Calculus

86710 \(\int_{0}^{2 \pi} \sin ^{9} x d x\) is equal to

1 0
2 \(18 \pi\)
3 \(9 \pi\)
4 18
Integral Calculus

86711 The value of the integral \(\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x, a>0\) is

1 1
2 0
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86708 \(\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin x}\right) d x\) is

1 2
2 \(3 / 4\)
3 0
4 -2
Integral Calculus

86709 \(\int_{-\pi / 4}^{\pi / 4} \frac{d x}{1+\cos 2 x}\) is equal to

1 1
2 2
3 3
4 4
Integral Calculus

86710 \(\int_{0}^{2 \pi} \sin ^{9} x d x\) is equal to

1 0
2 \(18 \pi\)
3 \(9 \pi\)
4 18
Integral Calculus

86711 The value of the integral \(\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x, a>0\) is

1 1
2 0
3 \(\frac{\pi}{2}\)
4 \(\pi\)