Definite Integral as Limit of a Sum
Integral Calculus

86424 \(\int_{0}^{2 \mathrm{a}} \frac{f(\mathrm{x})}{f(\mathrm{x})+f(2 \mathrm{a}-\mathrm{x})} \mathrm{dx}\) is equal to

1 a
2 \(-\mathrm{a}\)
3 1
4 0
Integral Calculus

86438 \(\int_{0}^{\pi / 2} \frac{d x}{5+4 \cos x}=\)

1 \(\tan ^{-1}\left(\frac{1}{3}\right)\)
2 \(\frac{2}{3} \tan ^{-1}\left(\frac{1}{3}\right)\)
3 \(2 \tan ^{-1}\left(\frac{1}{3}\right)\)
4 \(\frac{1}{3} \tan ^{-1}\left(\frac{1}{3}\right)\)
Integral Calculus

86439 The value of the integral \(\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x\) is

1 -1
2 \(\left(\frac{\pi}{2}\right)+1\)
3 \(\left(\frac{\pi}{2}\right)-1\)
4 1
Integral Calculus

86440 \(\int_{0}^{1} \frac{1}{\sqrt{3+2 x-x^{2}}} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86424 \(\int_{0}^{2 \mathrm{a}} \frac{f(\mathrm{x})}{f(\mathrm{x})+f(2 \mathrm{a}-\mathrm{x})} \mathrm{dx}\) is equal to

1 a
2 \(-\mathrm{a}\)
3 1
4 0
Integral Calculus

86438 \(\int_{0}^{\pi / 2} \frac{d x}{5+4 \cos x}=\)

1 \(\tan ^{-1}\left(\frac{1}{3}\right)\)
2 \(\frac{2}{3} \tan ^{-1}\left(\frac{1}{3}\right)\)
3 \(2 \tan ^{-1}\left(\frac{1}{3}\right)\)
4 \(\frac{1}{3} \tan ^{-1}\left(\frac{1}{3}\right)\)
Integral Calculus

86439 The value of the integral \(\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x\) is

1 -1
2 \(\left(\frac{\pi}{2}\right)+1\)
3 \(\left(\frac{\pi}{2}\right)-1\)
4 1
Integral Calculus

86440 \(\int_{0}^{1} \frac{1}{\sqrt{3+2 x-x^{2}}} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Integral Calculus

86424 \(\int_{0}^{2 \mathrm{a}} \frac{f(\mathrm{x})}{f(\mathrm{x})+f(2 \mathrm{a}-\mathrm{x})} \mathrm{dx}\) is equal to

1 a
2 \(-\mathrm{a}\)
3 1
4 0
Integral Calculus

86438 \(\int_{0}^{\pi / 2} \frac{d x}{5+4 \cos x}=\)

1 \(\tan ^{-1}\left(\frac{1}{3}\right)\)
2 \(\frac{2}{3} \tan ^{-1}\left(\frac{1}{3}\right)\)
3 \(2 \tan ^{-1}\left(\frac{1}{3}\right)\)
4 \(\frac{1}{3} \tan ^{-1}\left(\frac{1}{3}\right)\)
Integral Calculus

86439 The value of the integral \(\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x\) is

1 -1
2 \(\left(\frac{\pi}{2}\right)+1\)
3 \(\left(\frac{\pi}{2}\right)-1\)
4 1
Integral Calculus

86440 \(\int_{0}^{1} \frac{1}{\sqrt{3+2 x-x^{2}}} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Integral Calculus

86424 \(\int_{0}^{2 \mathrm{a}} \frac{f(\mathrm{x})}{f(\mathrm{x})+f(2 \mathrm{a}-\mathrm{x})} \mathrm{dx}\) is equal to

1 a
2 \(-\mathrm{a}\)
3 1
4 0
Integral Calculus

86438 \(\int_{0}^{\pi / 2} \frac{d x}{5+4 \cos x}=\)

1 \(\tan ^{-1}\left(\frac{1}{3}\right)\)
2 \(\frac{2}{3} \tan ^{-1}\left(\frac{1}{3}\right)\)
3 \(2 \tan ^{-1}\left(\frac{1}{3}\right)\)
4 \(\frac{1}{3} \tan ^{-1}\left(\frac{1}{3}\right)\)
Integral Calculus

86439 The value of the integral \(\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x\) is

1 -1
2 \(\left(\frac{\pi}{2}\right)+1\)
3 \(\left(\frac{\pi}{2}\right)-1\)
4 1
Integral Calculus

86440 \(\int_{0}^{1} \frac{1}{\sqrt{3+2 x-x^{2}}} d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)