Definite Integral as Limit of a Sum
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86441 \(\int_{-3}^{0} x \sqrt{x+4} d x=\)

1 \(\frac{-34}{15}\)
2 \(\frac{64}{15}\)
3 \(\frac{94}{15}\)
4 \(\frac{-94}{15}\)
Integral Calculus

86442 If \(\int_{0}^{k} \frac{d x}{2+8 x^{2}}=\frac{\pi}{16}\), then value of \(k\) is

1 \(\frac{1}{4}\)
2 4
3 2
4 \(\frac{1}{2}\)
Integral Calculus

86443 \(\int_{0}^{1} x(1-x)^{n} d x=\)

1 \(\frac{4}{(n+1)(n+2)}\)
2 \(\frac{n+3}{(n+1)(n+2)}\)
3 \(\frac{2 \mathrm{n}+3}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
4 \(\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
Integral Calculus

86444 \(\int_{2}^{3} \frac{\log x}{x} d x=\)

1 \(\frac{1}{2} \log 6 \log \frac{3}{2}\)
2 \(\frac{1}{2} \log 6 \log 3\)
3 \(\frac{1}{2} \log 6 \log \frac{3}{2}\)
4 \(2 \log 6 \log \frac{3}{2}\)
Integral Calculus

86441 \(\int_{-3}^{0} x \sqrt{x+4} d x=\)

1 \(\frac{-34}{15}\)
2 \(\frac{64}{15}\)
3 \(\frac{94}{15}\)
4 \(\frac{-94}{15}\)
Integral Calculus

86442 If \(\int_{0}^{k} \frac{d x}{2+8 x^{2}}=\frac{\pi}{16}\), then value of \(k\) is

1 \(\frac{1}{4}\)
2 4
3 2
4 \(\frac{1}{2}\)
Integral Calculus

86443 \(\int_{0}^{1} x(1-x)^{n} d x=\)

1 \(\frac{4}{(n+1)(n+2)}\)
2 \(\frac{n+3}{(n+1)(n+2)}\)
3 \(\frac{2 \mathrm{n}+3}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
4 \(\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
Integral Calculus

86444 \(\int_{2}^{3} \frac{\log x}{x} d x=\)

1 \(\frac{1}{2} \log 6 \log \frac{3}{2}\)
2 \(\frac{1}{2} \log 6 \log 3\)
3 \(\frac{1}{2} \log 6 \log \frac{3}{2}\)
4 \(2 \log 6 \log \frac{3}{2}\)
Integral Calculus

86441 \(\int_{-3}^{0} x \sqrt{x+4} d x=\)

1 \(\frac{-34}{15}\)
2 \(\frac{64}{15}\)
3 \(\frac{94}{15}\)
4 \(\frac{-94}{15}\)
Integral Calculus

86442 If \(\int_{0}^{k} \frac{d x}{2+8 x^{2}}=\frac{\pi}{16}\), then value of \(k\) is

1 \(\frac{1}{4}\)
2 4
3 2
4 \(\frac{1}{2}\)
Integral Calculus

86443 \(\int_{0}^{1} x(1-x)^{n} d x=\)

1 \(\frac{4}{(n+1)(n+2)}\)
2 \(\frac{n+3}{(n+1)(n+2)}\)
3 \(\frac{2 \mathrm{n}+3}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
4 \(\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
Integral Calculus

86444 \(\int_{2}^{3} \frac{\log x}{x} d x=\)

1 \(\frac{1}{2} \log 6 \log \frac{3}{2}\)
2 \(\frac{1}{2} \log 6 \log 3\)
3 \(\frac{1}{2} \log 6 \log \frac{3}{2}\)
4 \(2 \log 6 \log \frac{3}{2}\)
Integral Calculus

86441 \(\int_{-3}^{0} x \sqrt{x+4} d x=\)

1 \(\frac{-34}{15}\)
2 \(\frac{64}{15}\)
3 \(\frac{94}{15}\)
4 \(\frac{-94}{15}\)
Integral Calculus

86442 If \(\int_{0}^{k} \frac{d x}{2+8 x^{2}}=\frac{\pi}{16}\), then value of \(k\) is

1 \(\frac{1}{4}\)
2 4
3 2
4 \(\frac{1}{2}\)
Integral Calculus

86443 \(\int_{0}^{1} x(1-x)^{n} d x=\)

1 \(\frac{4}{(n+1)(n+2)}\)
2 \(\frac{n+3}{(n+1)(n+2)}\)
3 \(\frac{2 \mathrm{n}+3}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
4 \(\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\)
Integral Calculus

86444 \(\int_{2}^{3} \frac{\log x}{x} d x=\)

1 \(\frac{1}{2} \log 6 \log \frac{3}{2}\)
2 \(\frac{1}{2} \log 6 \log 3\)
3 \(\frac{1}{2} \log 6 \log \frac{3}{2}\)
4 \(2 \log 6 \log \frac{3}{2}\)