86418 If f:R→R is a differentiable function and f(2) =6, then limx→2∫6f(x)2 tdt (x−2) is
(A) : Given,limx→2∫6f(x)2tdt(x−2)=limx→21(x−2)[t2]6f(x)=limx→2[f(x)]2−62(x−2)[00 form ]By L - Hospital Rule ,=limx→22f(x)f′(x)1=2f(2)f′(2)=12f′(2)
86420 The value of limn→∞1r∑r=02n−1n2n2+4r2 is
(B)Given,limn→∞1n∑r=02n−1n2n2+4r2y=limn→∞1n∑r=02n−1n2n2(1+4r2n2)=limn→∞1n∑r=02n−111+4(rn)2 Let, rx=x When, r=0,x=0r=2n−1,x=2−1n=2(∵n=∞)y=∫0211+4x2⋅dxy=∫0211+(2x)2⋅dxy=[11tan−1(2x1)2]02y=12[tan−1(2x)]02=12[tan1(2×2)−tan−1(0)]y=12tan−1(4)
86421 limx→0∫0x2(sint)dtx3 is equal t
(A) : Givenlimx→0∫0x2(sint)dtx3By, L' Hospital's rule:limx→0∫0x2(sint)dtx3=limx→0ddx∫0x2sintdtddxx3[∵t=x2dt=2xdx]=limx→0sin(x2)(2x)3x2=limx→02sin(|x|)3x=limx→02sin(x)3x(x>0)=23
86422 If ∫1/221xcosec101(x−1x)dx=k then the value of k is
(C) : Let, I=∫1/221xcosec101(x−1x)dxLet, x=1tdx=1t2dtWhen, x=12,t=2x=2,t=12I=∫21/2tcoses101(1t−t)(1t2)dt=−∫21/21tcoses101(t−1t)dtI=−I2I=0I=0
86423 ∫0π/4tan2(x)dx=
(C) : Given,∫0π/4tan2(x)dx=∫0π/4(sec2x−1)dx=∫0π/4sec2x⋅dx−∫0π/41.dx=[tanx]0π/4−[x]0π/4=[tanπ4−tan0]−[π4−0]=1−0−π4=1−π4