Definite Integral as Limit of a Sum
Integral Calculus

86418 If f:RR is a differentiable function and f(2) =6, then limx26f(x)2 tdt (x2) is

1 12f(2)
2 0
3 24f(2)
4 2f(2)
Integral Calculus

86420 The value of limn1rr=02n1n2n2+4r2 is

1 12tan1(2)
2 12tan1(4)
3 tan1(4)
4 14tan1(4)
Integral Calculus

86421 limx00x2(sint)dtx3 is equal t

1 23
2 32
3 115
4 0
Integral Calculus

86422 If 1/221xcosec101(x1x)dx=k then the value of k is

1 1
2 12
3 0
4 1101
Integral Calculus

86423 0π/4tan2(x)dx=

1 π4
2 π41
3 1π4
4 0
Integral Calculus

86418 If f:RR is a differentiable function and f(2) =6, then limx26f(x)2 tdt (x2) is

1 12f(2)
2 0
3 24f(2)
4 2f(2)
Integral Calculus

86420 The value of limn1rr=02n1n2n2+4r2 is

1 12tan1(2)
2 12tan1(4)
3 tan1(4)
4 14tan1(4)
Integral Calculus

86421 limx00x2(sint)dtx3 is equal t

1 23
2 32
3 115
4 0
Integral Calculus

86422 If 1/221xcosec101(x1x)dx=k then the value of k is

1 1
2 12
3 0
4 1101
Integral Calculus

86423 0π/4tan2(x)dx=

1 π4
2 π41
3 1π4
4 0
Integral Calculus

86418 If f:RR is a differentiable function and f(2) =6, then limx26f(x)2 tdt (x2) is

1 12f(2)
2 0
3 24f(2)
4 2f(2)
Integral Calculus

86420 The value of limn1rr=02n1n2n2+4r2 is

1 12tan1(2)
2 12tan1(4)
3 tan1(4)
4 14tan1(4)
Integral Calculus

86421 limx00x2(sint)dtx3 is equal t

1 23
2 32
3 115
4 0
Integral Calculus

86422 If 1/221xcosec101(x1x)dx=k then the value of k is

1 1
2 12
3 0
4 1101
Integral Calculus

86423 0π/4tan2(x)dx=

1 π4
2 π41
3 1π4
4 0
Integral Calculus

86418 If f:RR is a differentiable function and f(2) =6, then limx26f(x)2 tdt (x2) is

1 12f(2)
2 0
3 24f(2)
4 2f(2)
Integral Calculus

86420 The value of limn1rr=02n1n2n2+4r2 is

1 12tan1(2)
2 12tan1(4)
3 tan1(4)
4 14tan1(4)
Integral Calculus

86421 limx00x2(sint)dtx3 is equal t

1 23
2 32
3 115
4 0
Integral Calculus

86422 If 1/221xcosec101(x1x)dx=k then the value of k is

1 1
2 12
3 0
4 1101
Integral Calculus

86423 0π/4tan2(x)dx=

1 π4
2 π41
3 1π4
4 0
Integral Calculus

86418 If f:RR is a differentiable function and f(2) =6, then limx26f(x)2 tdt (x2) is

1 12f(2)
2 0
3 24f(2)
4 2f(2)
Integral Calculus

86420 The value of limn1rr=02n1n2n2+4r2 is

1 12tan1(2)
2 12tan1(4)
3 tan1(4)
4 14tan1(4)
Integral Calculus

86421 limx00x2(sint)dtx3 is equal t

1 23
2 32
3 115
4 0
Integral Calculus

86422 If 1/221xcosec101(x1x)dx=k then the value of k is

1 1
2 12
3 0
4 1101
Integral Calculus

86423 0π/4tan2(x)dx=

1 π4
2 π41
3 1π4
4 0