86418
If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is
1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Explanation:
(A) : Given, \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 t d t}{(x-2)}=\lim _{x \rightarrow 2} \frac{1}{(x-2)}\left[t^{2}\right]_{6}^{f(x)}\) \(=\lim _{x \rightarrow 2} \frac{[f(x)]^{2}-6^{2}}{(x-2)}\) \(\left[\frac{0}{0}\right.\) form \(]\) By L - Hospital Rule , \(=\lim _{x \rightarrow 2} \frac{2 f(x) f^{\prime}(x)}{1}=2 f(2) f^{\prime}(2)=12 f^{\prime}(2)\)
JEE Main-2019-09.04.2019
Integral Calculus
86420
The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is
86418
If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is
1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Explanation:
(A) : Given, \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 t d t}{(x-2)}=\lim _{x \rightarrow 2} \frac{1}{(x-2)}\left[t^{2}\right]_{6}^{f(x)}\) \(=\lim _{x \rightarrow 2} \frac{[f(x)]^{2}-6^{2}}{(x-2)}\) \(\left[\frac{0}{0}\right.\) form \(]\) By L - Hospital Rule , \(=\lim _{x \rightarrow 2} \frac{2 f(x) f^{\prime}(x)}{1}=2 f(2) f^{\prime}(2)=12 f^{\prime}(2)\)
JEE Main-2019-09.04.2019
Integral Calculus
86420
The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is
86418
If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is
1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Explanation:
(A) : Given, \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 t d t}{(x-2)}=\lim _{x \rightarrow 2} \frac{1}{(x-2)}\left[t^{2}\right]_{6}^{f(x)}\) \(=\lim _{x \rightarrow 2} \frac{[f(x)]^{2}-6^{2}}{(x-2)}\) \(\left[\frac{0}{0}\right.\) form \(]\) By L - Hospital Rule , \(=\lim _{x \rightarrow 2} \frac{2 f(x) f^{\prime}(x)}{1}=2 f(2) f^{\prime}(2)=12 f^{\prime}(2)\)
JEE Main-2019-09.04.2019
Integral Calculus
86420
The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Integral Calculus
86418
If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is
1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Explanation:
(A) : Given, \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 t d t}{(x-2)}=\lim _{x \rightarrow 2} \frac{1}{(x-2)}\left[t^{2}\right]_{6}^{f(x)}\) \(=\lim _{x \rightarrow 2} \frac{[f(x)]^{2}-6^{2}}{(x-2)}\) \(\left[\frac{0}{0}\right.\) form \(]\) By L - Hospital Rule , \(=\lim _{x \rightarrow 2} \frac{2 f(x) f^{\prime}(x)}{1}=2 f(2) f^{\prime}(2)=12 f^{\prime}(2)\)
JEE Main-2019-09.04.2019
Integral Calculus
86420
The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is
86418
If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is
1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Explanation:
(A) : Given, \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 t d t}{(x-2)}=\lim _{x \rightarrow 2} \frac{1}{(x-2)}\left[t^{2}\right]_{6}^{f(x)}\) \(=\lim _{x \rightarrow 2} \frac{[f(x)]^{2}-6^{2}}{(x-2)}\) \(\left[\frac{0}{0}\right.\) form \(]\) By L - Hospital Rule , \(=\lim _{x \rightarrow 2} \frac{2 f(x) f^{\prime}(x)}{1}=2 f(2) f^{\prime}(2)=12 f^{\prime}(2)\)
JEE Main-2019-09.04.2019
Integral Calculus
86420
The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is