Definite Integral as Limit of a Sum
Integral Calculus

86418 If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is

1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Integral Calculus

86420 The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is

1 \(\frac{1}{2} \tan ^{-1}(2)\)
2 \(\frac{1}{2} \tan ^{-1}(4)\)
3 \(\tan ^{-1}(4)\)
4 \(\frac{1}{4} \tan ^{-1}(4)\)
Integral Calculus

86421 \(\lim _{x \rightarrow 0} \frac{\int_0^{x^2}(\sin \sqrt{t}) d t}{x^3}\) is equal \(t\)

1 \(\frac{2}{3}\)
2 \(\frac{3}{2}\)
3 \(\frac{1}{15}\)
4 0
Integral Calculus

86422 If \(\int_{1 / 2}^{2} \frac{1}{x} \operatorname{cosec}^{101}\left(x-\frac{1}{x}\right) d x=k\) then the value of \(k\) is

1 1
2 \(\frac{1}{2}\)
3 0
4 \(\frac{1}{101}\)
Integral Calculus

86423 \(\int_{0}^{\pi / 4} \tan ^{2}(x) d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{4}-1\)
3 \(1-\frac{\pi}{4}\)
4 0
Integral Calculus

86418 If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is

1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Integral Calculus

86420 The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is

1 \(\frac{1}{2} \tan ^{-1}(2)\)
2 \(\frac{1}{2} \tan ^{-1}(4)\)
3 \(\tan ^{-1}(4)\)
4 \(\frac{1}{4} \tan ^{-1}(4)\)
Integral Calculus

86421 \(\lim _{x \rightarrow 0} \frac{\int_0^{x^2}(\sin \sqrt{t}) d t}{x^3}\) is equal \(t\)

1 \(\frac{2}{3}\)
2 \(\frac{3}{2}\)
3 \(\frac{1}{15}\)
4 0
Integral Calculus

86422 If \(\int_{1 / 2}^{2} \frac{1}{x} \operatorname{cosec}^{101}\left(x-\frac{1}{x}\right) d x=k\) then the value of \(k\) is

1 1
2 \(\frac{1}{2}\)
3 0
4 \(\frac{1}{101}\)
Integral Calculus

86423 \(\int_{0}^{\pi / 4} \tan ^{2}(x) d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{4}-1\)
3 \(1-\frac{\pi}{4}\)
4 0
Integral Calculus

86418 If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is

1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Integral Calculus

86420 The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is

1 \(\frac{1}{2} \tan ^{-1}(2)\)
2 \(\frac{1}{2} \tan ^{-1}(4)\)
3 \(\tan ^{-1}(4)\)
4 \(\frac{1}{4} \tan ^{-1}(4)\)
Integral Calculus

86421 \(\lim _{x \rightarrow 0} \frac{\int_0^{x^2}(\sin \sqrt{t}) d t}{x^3}\) is equal \(t\)

1 \(\frac{2}{3}\)
2 \(\frac{3}{2}\)
3 \(\frac{1}{15}\)
4 0
Integral Calculus

86422 If \(\int_{1 / 2}^{2} \frac{1}{x} \operatorname{cosec}^{101}\left(x-\frac{1}{x}\right) d x=k\) then the value of \(k\) is

1 1
2 \(\frac{1}{2}\)
3 0
4 \(\frac{1}{101}\)
Integral Calculus

86423 \(\int_{0}^{\pi / 4} \tan ^{2}(x) d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{4}-1\)
3 \(1-\frac{\pi}{4}\)
4 0
Integral Calculus

86418 If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is

1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Integral Calculus

86420 The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is

1 \(\frac{1}{2} \tan ^{-1}(2)\)
2 \(\frac{1}{2} \tan ^{-1}(4)\)
3 \(\tan ^{-1}(4)\)
4 \(\frac{1}{4} \tan ^{-1}(4)\)
Integral Calculus

86421 \(\lim _{x \rightarrow 0} \frac{\int_0^{x^2}(\sin \sqrt{t}) d t}{x^3}\) is equal \(t\)

1 \(\frac{2}{3}\)
2 \(\frac{3}{2}\)
3 \(\frac{1}{15}\)
4 0
Integral Calculus

86422 If \(\int_{1 / 2}^{2} \frac{1}{x} \operatorname{cosec}^{101}\left(x-\frac{1}{x}\right) d x=k\) then the value of \(k\) is

1 1
2 \(\frac{1}{2}\)
3 0
4 \(\frac{1}{101}\)
Integral Calculus

86423 \(\int_{0}^{\pi / 4} \tan ^{2}(x) d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{4}-1\)
3 \(1-\frac{\pi}{4}\)
4 0
Integral Calculus

86418 If \(f: R \rightarrow R\) is a differentiable function and \(f(2)\) \(=6\), then \(\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{2 \text { tdt }}{(x-2)}\) is

1 \(12 \mathrm{f}^{\prime}(2)\)
2 0
3 \(24f'(2)\)
4 \(2f' (2)\)
Integral Calculus

86420 The value of \(\lim _{n \rightarrow \infty} \frac{1}{\mathbf{r}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}-1} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}+4 \mathrm{r}^{2}}\) is

1 \(\frac{1}{2} \tan ^{-1}(2)\)
2 \(\frac{1}{2} \tan ^{-1}(4)\)
3 \(\tan ^{-1}(4)\)
4 \(\frac{1}{4} \tan ^{-1}(4)\)
Integral Calculus

86421 \(\lim _{x \rightarrow 0} \frac{\int_0^{x^2}(\sin \sqrt{t}) d t}{x^3}\) is equal \(t\)

1 \(\frac{2}{3}\)
2 \(\frac{3}{2}\)
3 \(\frac{1}{15}\)
4 0
Integral Calculus

86422 If \(\int_{1 / 2}^{2} \frac{1}{x} \operatorname{cosec}^{101}\left(x-\frac{1}{x}\right) d x=k\) then the value of \(k\) is

1 1
2 \(\frac{1}{2}\)
3 0
4 \(\frac{1}{101}\)
Integral Calculus

86423 \(\int_{0}^{\pi / 4} \tan ^{2}(x) d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{4}-1\)
3 \(1-\frac{\pi}{4}\)
4 0