Definite Integral as Limit of a Sum
Integral Calculus

86414 The integral 0πx2cosecxsinxdx is equal to

1 π4
2 π2
3 π22
4 π24
Integral Calculus

86425 01x(1x)12dx is equal to

1 1132
2 1156
3 1182
4 None of the above
Integral Calculus

86378 ex2(2x+x3)(3+x2)2dx is equal to :

1 ex2(3+x2)+k
2 12ex2(3+x2)2+k
3 14ex2(3+x2)2+k
4 12ex2(3+x2)+k
Integral Calculus

86414 The integral 0πx2cosecxsinxdx is equal to

1 π4
2 π2
3 π22
4 π24
Integral Calculus

86425 01x(1x)12dx is equal to

1 1132
2 1156
3 1182
4 None of the above
Integral Calculus

86427 If a<0<b, then ab|x|xdx

1 ab
2 ba
3 a+b
4 ab
Integral Calculus

86378 ex2(2x+x3)(3+x2)2dx is equal to :

1 ex2(3+x2)+k
2 12ex2(3+x2)2+k
3 14ex2(3+x2)2+k
4 12ex2(3+x2)+k
Integral Calculus

86414 The integral 0πx2cosecxsinxdx is equal to

1 π4
2 π2
3 π22
4 π24
Integral Calculus

86425 01x(1x)12dx is equal to

1 1132
2 1156
3 1182
4 None of the above
Integral Calculus

86427 If a<0<b, then ab|x|xdx

1 ab
2 ba
3 a+b
4 ab
Integral Calculus

86378 ex2(2x+x3)(3+x2)2dx is equal to :

1 ex2(3+x2)+k
2 12ex2(3+x2)2+k
3 14ex2(3+x2)2+k
4 12ex2(3+x2)+k
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86414 The integral 0πx2cosecxsinxdx is equal to

1 π4
2 π2
3 π22
4 π24
Integral Calculus

86425 01x(1x)12dx is equal to

1 1132
2 1156
3 1182
4 None of the above
Integral Calculus

86427 If a<0<b, then ab|x|xdx

1 ab
2 ba
3 a+b
4 ab
Integral Calculus

86378 ex2(2x+x3)(3+x2)2dx is equal to :

1 ex2(3+x2)+k
2 12ex2(3+x2)2+k
3 14ex2(3+x2)2+k
4 12ex2(3+x2)+k