Definite Integral as Limit of a Sum
Integral Calculus

86412 If [x] represents greatest integer less than or equal to \(x\), then \(\int_{2}^{5} 2[x] d x=\)

1 9
2 12
3 18
4 24
Integral Calculus

86413 The value of the integral \(\int_{0}^{\pi / 2} \frac{1}{1+\cos ^{2} x} d x\) is equal to

1 \(\frac{\pi}{4 \sqrt{2}}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{\sqrt{2}}\)
4 \(\frac{\pi}{2 \sqrt{2}}\)
Integral Calculus

86376 \(\int_{-\pi / 2}^{\pi / 2} \frac{\cos x}{1+e^{x}} d x\) is equal to

1 1
2 0
3 -1
4 None of these
Integral Calculus

86377 If \(\int \frac{\cos x-1}{\sin x+1} e^{x} d x\) is equal to :

1 \(\frac{e^{x} \cos x}{1+\sin x}+C\)
2 \(C-\frac{e^{x} \sin \mathrm{x}}{1+\sin \mathrm{x}}\)
3 \(C-\frac{e^{x}}{1+\sin x}\)
4 \(C-\frac{e^{x} \cos x}{1+\sin x}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86412 If [x] represents greatest integer less than or equal to \(x\), then \(\int_{2}^{5} 2[x] d x=\)

1 9
2 12
3 18
4 24
Integral Calculus

86413 The value of the integral \(\int_{0}^{\pi / 2} \frac{1}{1+\cos ^{2} x} d x\) is equal to

1 \(\frac{\pi}{4 \sqrt{2}}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{\sqrt{2}}\)
4 \(\frac{\pi}{2 \sqrt{2}}\)
Integral Calculus

86376 \(\int_{-\pi / 2}^{\pi / 2} \frac{\cos x}{1+e^{x}} d x\) is equal to

1 1
2 0
3 -1
4 None of these
Integral Calculus

86377 If \(\int \frac{\cos x-1}{\sin x+1} e^{x} d x\) is equal to :

1 \(\frac{e^{x} \cos x}{1+\sin x}+C\)
2 \(C-\frac{e^{x} \sin \mathrm{x}}{1+\sin \mathrm{x}}\)
3 \(C-\frac{e^{x}}{1+\sin x}\)
4 \(C-\frac{e^{x} \cos x}{1+\sin x}\)
Integral Calculus

86412 If [x] represents greatest integer less than or equal to \(x\), then \(\int_{2}^{5} 2[x] d x=\)

1 9
2 12
3 18
4 24
Integral Calculus

86413 The value of the integral \(\int_{0}^{\pi / 2} \frac{1}{1+\cos ^{2} x} d x\) is equal to

1 \(\frac{\pi}{4 \sqrt{2}}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{\sqrt{2}}\)
4 \(\frac{\pi}{2 \sqrt{2}}\)
Integral Calculus

86376 \(\int_{-\pi / 2}^{\pi / 2} \frac{\cos x}{1+e^{x}} d x\) is equal to

1 1
2 0
3 -1
4 None of these
Integral Calculus

86377 If \(\int \frac{\cos x-1}{\sin x+1} e^{x} d x\) is equal to :

1 \(\frac{e^{x} \cos x}{1+\sin x}+C\)
2 \(C-\frac{e^{x} \sin \mathrm{x}}{1+\sin \mathrm{x}}\)
3 \(C-\frac{e^{x}}{1+\sin x}\)
4 \(C-\frac{e^{x} \cos x}{1+\sin x}\)
Integral Calculus

86412 If [x] represents greatest integer less than or equal to \(x\), then \(\int_{2}^{5} 2[x] d x=\)

1 9
2 12
3 18
4 24
Integral Calculus

86413 The value of the integral \(\int_{0}^{\pi / 2} \frac{1}{1+\cos ^{2} x} d x\) is equal to

1 \(\frac{\pi}{4 \sqrt{2}}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{\sqrt{2}}\)
4 \(\frac{\pi}{2 \sqrt{2}}\)
Integral Calculus

86376 \(\int_{-\pi / 2}^{\pi / 2} \frac{\cos x}{1+e^{x}} d x\) is equal to

1 1
2 0
3 -1
4 None of these
Integral Calculus

86377 If \(\int \frac{\cos x-1}{\sin x+1} e^{x} d x\) is equal to :

1 \(\frac{e^{x} \cos x}{1+\sin x}+C\)
2 \(C-\frac{e^{x} \sin \mathrm{x}}{1+\sin \mathrm{x}}\)
3 \(C-\frac{e^{x}}{1+\sin x}\)
4 \(C-\frac{e^{x} \cos x}{1+\sin x}\)